
NAVAL POSTGRADUATE SCHOOL
Monterey, California

MR 2020 Course Notes

MR 2020
COMPUTER COMPUTATIONS IN

AIR-OCEAN SCIENCES

by

Mary S. Jordan
Department of Meteorology
Naval Postgraduate School

Monterey, CA 93943
jordan@nps.navy.mil

April 2002

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

I. INTRODUCTION TO UNIX... 1
A. UNIX SKILLS CHECKLIST .. 1
B. DIRECTORY STRUCURE WITH RELATIVE PATH NAMES.............. 3
C. DIRECTORY STRUCURE WITH ABSOLUTE PATH NAMES............. 4
D. COMMON UNIX COMMANDS... 5
E. ABSOLUTE AND RELATIVE PATH NAMES.. 10
F. USING THE “CD” COMMAND... 13
G. UNIX FILE PERMISSIONS.. 13

II. INTRODUCTION TO MATLAB.. 17
A. TEXTBOOK.. 17
B. HOW DOES MATLAB WORK? .. 17
C. STARTING MATLAB ... 19
D. USING MATLAB AS A CALCULATOR .. 19
E. ASSIGNING VARIABLE NAMES... 20
F. WORKSPACE ENVIRONMENT... 21
G. SAVING THE WORKSPACE... 21
H. RELOADING THE WORKSPACE.. 22

III. ORDER OF PRECEDENCE ... 23

IV. MATRIX OPERATORS .. 26
A. OVERVIEW .. 26
B. MATRIX ADDITION AND SUBTRACTION... 26
C. MATRIX MULTIPLICATION... 26
D. MATRIX DIVISION... 27
E. MATRIX EXPONENTIATION .. 28
F. EXAMPLES USING MATRIX OPERATORS ... 28

V. ARRAY OPERATORS... 31
A. OVERVIEW .. 31
B. ARRAY ADDITION AND SUBTRACTION... 31
C. ARRAY MULTIPLICATION ... 31
D. ARRAY DIVISION... 32
E. ARRAY EXPONENTIATION... 32
F. NONCONJUGATED TRANSPOSE... 33
G. EXAMPLES USING ARRAY OPERATORS.. 34

VI. SIMPLE DATA INPUT AND OUTPUT .. 36
A. METHODS TO INPUT DATA INTO MATLAB 36
B. “INPUT” FUNCTION .. 36
C. DISPLAYING VALUES TO THE SCREEN ... 38
D. “DISP” FUNCTION ... 38

VII. SEARCH PATH .. 41
A. WHAT IS A “SEARCH PATH”?.. 41
B. ADD OR REMOVE A PATH .. 42

VIII. M-FILES .. 43
A. WHAT IS AN “M-FILE”? ... 43
B. SCRIPT M-FILES... 43
C. FUNCTION M-FILES.. 44
D. RULES APPLYING TO BOTH SCRIPT AND FUNCTION M-FILES. 44
E. HOW TO CREATE AN M-FILE.. 45
F. WHY USE A SCRIPT M-FILE? ... 45
G. CREATING AND TESTING A SCRIPT M-FILE.................................... 45
H. PROGRAMMING TIP... 46
I. DOCUMENTATION REQUIREMENTS FOR SCRIPT M-FILES 47

IX. RELATIONAL AND LOGICAL OPERATORS USING SCALAR
VARIABLES.. 49
A. INTRODUCTION... 49
B. DEFINITIONS .. 49

X. LOOPS, BRANCHES AND CONTROL-FLOW... 53
A. INTRODUCTION... 53
B. “ IF ” STATEMENTS... 53
C. “ FOR ” LOOPS.. 60
D. “ WHILE ” LOOPS .. 66
E. “BREAK” COMMAND ... 69

XI. FUNCTIONS ... 71
A. INTRODUCTION... 71
B. ADVANTAGES OF USING FUNCTIONS .. 71
C. DISADVANTAGES OF USING FUNCTIONS ... 71
D. REQUIRED ELEMENTS AND EXECUTION OF A FUNCTION M-

FILE.. 72
E. FUNCTION VARIABLES: INPUT, OUTPUT AND LOCAL................. 73
F. VARIABLES NAMES .. 74

G. HOW TO WRITE AND TEST A FUNCTION.. 78
H. THINGS TO CHECK WHEN CALLING A FUNCTION IN A

PROGRAM.. 79

XII. GENERAL PROGRAMMING TIPS.. 80
A. VARIABLE NAMES .. 80
B. M-FILES .. 80

XIII. PLOTTING WITH MATLAB... 82
A. BASIC PLOT COMMANDS ... 82
B. HANDLE GRAPHICS.. 84
C. PLOTTING A COASTLINE ... 88
D. PRINTING AND SAVING A DIGITAL IMAGE 89

XIV. HOW TO USE “FTP”... 92
A. OVERVIEW .. 92
B. PROCEDURES TO FTP TO THE IDEA/GRAPHICS LABS 92
C. FTP TO AN NPS NETWORK PC... 93
D. FTP TO THE IDEA OR GRAPHICS LABS FROM OFF-CAMPUS..... 93

XV. CHARACTER STRINGS... 94
A. RULES FOR CHARACTER STRINGS... 94
B. CHARACTER STRINGS AS ROW VECTORS 94
C. CONCATENATION... 95
D. CONVERT NUMBERS TO CHARACTER STRINGS............................ 95
E. MATRICES OF CHARACTER STRINGS ... 96
F. INDIVIDUAL CHARACTER STRINGS IN A MATRIX........................ 97
G. ADDING STRINGS TO EXISTING MATRICES 98
H. "FOR" LOOP TO CREATE A MATRIX OF CHARACTER

STRINGS ... 99

XVI. “EVAL” FUNCTION ... 100
A. OVERVIEW .. 100
B. EXAMPLES... 100

XVII. SEARCHING DATA ARRAYS AND MATRICES ... 102
A. OVERVIEW .. 102
B. BASIC CONCEPTS AND DEFINITIONS... 102
C. ARRAY INDEX... 102
D. MATRIX INDEX .. 103
E. “FIND” FUNCTION... 104
F. LOGICAL ARRAYS AND MATRICES .. 105
G. RELATIONAL AND LOGICAL OPERATORS USING ARRAYS

AND MATRICES.. 107
H. SEARCHING DATA ARRAYS... 108

XVIII. DATA WITH MISSING/BAD VALUES AND “NAN” 112
A. MISSING/BAD DATA AND QUALITY CONTROL 112
B. METHOD TO REPLACE MISSING/BAD DATA VALUES 114
C. EXCLUDING “NANS” IN PLOTS... 116

XIX. PROGRAM DESIGN EXAMPLE .. 118

XX. DEBUGGING SUGGESTIONS .. 120

XXI. FORMATTED OUTPUT ... 121
A. INTRODUCTION... 121
B. “SPRINTF” FUNCTION ... 121
C. FORMAT STRINGS... 124
D. “FPRINTF” FUNCTION ... 128

XXII. READING ASCII TEXT DATA FILES .. 130
A. INTRODUCTION... 130
B. OPEN FILE WITH “FOPEN” FUNCTION .. 131
C. CLOSE FILE WITH “FCLOSE” FUNCTION 132
D. READ LINE OF TEXT WITH “FGETL” FUNCTION 132
E. READ DATA COLUMNS WITH “FSCANF” FUNCTION 133

XXIII. EXAMPLES OF DECODERS FOR ASCII DATA FILES............................... 135
A. INTRODUCTION... 135
B. EXAMPLE 1: MISSING DATA DENOTED BY –9999.99 136
C. EXAMPLE 2: MISSING DATA DENOTED BY 9999 137
D. EXAMPLE 3: MISSING DATA DENOTED BY SLASHES................. 138
E. EXAMPLE 4: MISSING DATA DENOTED BY SLASHES................. 142

APPENDIX A. MATLAB SKILLS CHECKLIST...A-1
REFERENCES:...A-1
SKILLS: ...A-1

I. INTRODUCTION TO UNIX

A. UNIX SKILLS CHECKLIST

1. Log into your UNIX account.

2. Change password -- after choosing an password that is difficult to crack.

3. Log out of the UNIX workstation.

4. Security procedures for the MR and OC UNIX labs.

• IDEA Lab (Root 123)
• Graphics Lab (Spanagel 341)

5. Know the absolute path name for your home directory.

6. Understand UNIX case sensitivity.

7. Understand absolute and relative path names.

8. Understand the print work directory "pwd" command.

9. Make and remove directories ("mkdir" and "rmdir" commands).

10. Change directories with the "cd" command.

11. Know three ways to "cd" to your home directory from any directory.

12. Understand file name rules:

• Case sensitive.
• Understand permissible file names and invalid characters.
• Root name and extension: rootname.extension

(e.g. 20010111syn.gem)

13. Listing files and directories with "ls", "ls -l", 'ls -la", and "ls -C".

14. Understand and identify file permissions.

15. Understand "hidden" files.

16. Be able to identify directories in a listing.

17. Use of the wildcard *.

18. Copying files ("cp").

1

19. Removing (deleting) files ("rm").

20. Use of text editors "nedit" and "jot".

• Open a file using text editor in a UNIX shell.
• Understand the difference between opening a text editor from a menu

and from a UNIX shell.
• Understand the difference between a text editor and a word processor.
• Understand why the "&" may be needed with nedit (e.g. nedit

myfile.txt &).

21. Viewing the contents of files (without opening the files).

• "more", "cat", and "tail" commands.

22. Understand the "history" command, "!!" and "!n".

23. Understand how to print a file from a UNIX shell (winterm) using "lp

filename".

24. Understand the use of "Control-C" and "Control-D".

25. Use the "chmod" command to change file permissions.

26. Understand workstation procedures:

• Never power off a workstation.
• Never hit the reset button a workstation.
• Never use a UNIX file icon menu as you would use a Microsoft

Explorer window for copying files, etc.
• Understand that other users may be remotely logged into you

workstation and sharing the CPU.
• At night and on weekends, power off only the monitor before leaving.

2

B. DIRECTORY STRUCURE WITH RELATIVE PATH NAMES

Relative Names of Directories

Lab1 Lab2

mrhome1

/

Lab1 Lab2

MR2020 OC3150 MA1118

username

h

3

C. DIRECTORY STRUCURE WITH ABSOLUTE PATH NAMES

Absolute Path Names of Directories

 /h/mrhome1/username/MR2020/Lab1

/h/mrhome1/username/OC3150/Lab2

/h/mrhome1/username/OC3150/Lab1

/h/mrhome1/username/MR2020/Lab2

/h/mrhome1

/

/h/mrhome1/username

/h

/h/mrhome1/username/MR2020 /h/mrhome1/username/OC3150 /h/mrhome1/username/MA1118

4

D. COMMON UNIX COMMANDS

The following conventions are used in the UNIX command examples:

1. Any commands or other text, which a user must enter into the computer, will

appear in boldface.

2. Every command line is to be completed with a press of the (RETURN) key.

3. All UNIX commands must be typed in lower case.

4. Some UNIX commands have options available, and the option is identified in

the command with the dash, "-", e.g. command –option

Table 1. Common UNIX Commands

5

Command Option Description
man The on-line manual with a complete list

of options available for each command.
man command

pwd Print working directory: tells absolute
path from root to where you currently
are in the file system.

cd Change directory. Syntax:
cd path/directory

where path/directory is either an
absolute or relative pathname to the
desired directory.

cd ~ Changes to the users’ home directory.

cd .. Changes to the parent directory of the
current directory (up one level).

mkdir Make directory. Syntax:
mkdir directoryname

rmdir Remove directory. Syntax:
rmdir directoryname

Note: the directory must be empty to be
removed.

ls List files and directory names in the
current directory in column format.

ls -l List files and directory names in long
format, showing permissions, size, date
last changed, etc.

ls -la Long listing, including hidden files
(filenames starting with a period, ".")

> Redirects output for the screen to a file.

ls –l > dir.txt Directory listing is stored in file
“dir.txt”.

cp Copies a file. Syntax:
cp path/filename
path/filename

rm Removes a file.
Syntax: rm filename

mv Moves a file to a new path/name, with
the original file deleted.
mv path/oldname
path/newname

mv can be used to rename a file if the
path is the same.

This can be a dangerous command if
you make a typo!

more Displays the contents of a file, one
screen-full at a time with a pause. To
continue to the next screen, use the
space bar. Syntax:
more filename

6

tail Displays the last 10 lines of a file to the

screen. Syntax:
tail filename

tail -15 Displays last 15 lines.

head Displays the first 10 lines of a file to the
screen. Syntax:
head filename

head -15 Displays first 15 lines.

cat Concatenates or joins files and prints to
the screen.

cat filename Prints the contents of filename to the
screen.

cat f1 f2 > file3 Used with a ">", it can join or
concatenate multiple files. Appends file
“f2” to the end of file “f1” and saves it
in a new file, file3. Original files are
not changed.

lp Print a file on the printer in the IDEA
Lab and Graphics Lab. Syntax:
lp filename

history Lists previous commands by number.

!n Executes the nth command.

!17 Executes the 17th command.

Ctrl-c Emergency stop for a process. This
stops print to the screen, infinite loops,
etc. Works in both UNIX and
MATLAB.

Ctrl-d Kills the shell (winterm), which stops
the execution of a process.

quota Displays if user is over allotted disk
space quota.

quota –v Displays user quota and amount of disk
space used.

7

| UNIX control character called a “pipe”.
This character is on the same key as “ \
”. Used in some UNIX commands to
direct the output of one command to be
the input for the next command.

grep A powerful search command. Can
search a file and extract all lines
containing a specified word or phrase.
Output is to the screen.

grep smith file2 Extracts all lines in file, file2, containing
the word “smith”. To search for a
phrase, enclose the phrase in single
quotes.

ls –l | grep .m Extracts all lines in the directory listing
(ls –l) which contain the file extension
“.m ”.

ps Lists all the processes currently running
on the workstation (all windows, the
desktop menu, the clock, programs, etc).

ps -ef | grep username Lists only the processes for username.

The output lists the username, process
identification number (PID), and process
name:

username 5544 /usr/bin/X11/xterm
kill Stops the execution (kills) a specified

process.
kill 5544 Stops the execution of process 5544.

8

Table 2. Comparison of DOS and UNIX Commands.

Action DOS Command UNIX Command

Display list of files dir ls

Display file contents type cat

Display file contents one
screen at a time

type filename | more more

Copy file copy cp

Rename file rename mv

Delete file del rm

Create directory mkdir mkdir

Delete directory rmdir rmdir

Change working directory cd or chdir cd

Find string in file find grep

Compare files comp diff

Help help man

Print a file print lp filename

(IDEA/Graphics Lab
only)

Display the printer queue print lpstat

(IDEA/Graphics Lab
only)

Display date & time date

time

date

(displays date & time)

Change file protection attrib chmod

Display free disk space chkdsk df

9

E. ABSOLUTE AND RELATIVE PATH NAMES

1. Definition: Absolute Path is the long path name, which can be used in any

command.

• For your account, the absolute path is similar to:

 /h/mrhome1/username

• The absolute path for your mr2020 directory is similar to:

 /h/mrhome1/username/mr2020

1. Definition: Relative Path is the path relative to the directory in which you are

working.

• If you are in your home directory, the RELATIVE path to your
mr2020 directory is:

mr2020

• The command, using relative path names, to change from
/h/mrhome1/username is:

cd mr2020

• The command, using the absolute path, which works from any
directory, is:

cd /h/mrhome1/username/mr2020

2. Relative Directory Names

• In each UNIX directory, two directory names are automatically made.
You can only see these directory names with the ls -la command.

• Example using directory: /home/usr6/mr2020/lab1

drwxr-xr-x 2 pasmith user 512 Jan 4 13:21 .
drwxr-xr-x 6 pasmith user 2560 Jan 4 13:21 ..

"." means the current directory
".." means the directory directly above the current directory
 (parent directory)
cd .. move up one directory
cd ../.. move up two directory levels
cd ../lab2 move up one directory, then down into the directory lab2

10

3. Examples using the copy (cp) command

Example 1: In the same directory, copy file1.txt to file2.txt

Location: You are in the directory with file1.txt
 cp file1.txt file2.txt

Note: All names are RELATIVE. Since you are in the same directory,
there is no need to use absolute path names.

Example 2: Copy /home/usr6/mr2020/file1.txt
 to /h/mrhome1/username/mr2020/file2.txt

a. Use ABSOLUTE path names (works from any directory)

cp /home/usr6/mr2020/file1.txt /h/mrhome1/username/mr2020/file2.txt

b. Mix ABSOLUTE and RELATIVE path names depending on the working

directory location:

i. Location: /home/usr6/mr2020

cp file1.txt /h/mrhome1/username/mr2020/file2.txt

ii. Location: /h/mrhome1/username

 cp /home/usr6/mr2020/file1.txt mr2020/file2.txt

Example 3: Keeping the same file name (file1.txt), copy

/home/usr6/mr2020/file1.txt to directory
/h/mrhome1/username/mr2020

a. Use ABSOLUTE path names (works from any directory):
 cp /home/usr6/mr2020/file1.txt /h/mrhome1/username/mr2020

Note: Unless told otherwise, UNIX copies to the SAME file name.

11

b. Mix ABSOLUTE and RELATIVE path names depending on your

location:

i. Location: /home/usr6/mr2020

cp file1.txt /h/mrhome1/username/mr2020

ii. Location: /h/mrhome1/username/mr2020

cp /home/usr6/mr2020/file1.txt .

 Note: "." means the current directory

iii. Location: /h/mrhome1/username

cp /home/usr6/mr2020/file1.txt mr2020

Example 4: Copying files within a relative directory structure defined as:

 /h/mrhome1/username
 /h/mrhome1/username/lab1
 /h/mrhome1/username/lab2

a. Copy file1.txt up one directory:

cp file1.txt ..

 Note: same command if file1.txt was in either subdirectory.

b. Copy file1.txt from subdirectory lab1 to lab2, keeping the same filename.

cp file1.txt ../lab2/file1.txt

or, cp file1.txt ../lab2/ (assumes same filename)

c. Copy file1.txt from subdirectory lab1 to lab2, but with a new filename,

file2.txt

cp file1.txt ../lab2/file2.txt

12

F. USING THE “cd” COMMAND

1. Changing to your home directory.

• The command cd, without a pathname, returns to your home directory.

 cd

1. Using the tilde “~” character instead of a full pathname.

• Use the ~ (tilde) character in place of the full pathname to your own or
another user's home directory.

• For example, to change your working directory to the home directory
of the user "jksmith", enter the command:

 cd ~jksmith

• Using the tilde in place of the full pathname is very useful in cases
when you don't know the full pathname to the account home directory.

G. UNIX FILE PERMISSIONS

1. There are three types of access permissions: read, write and execute. There

are different meanings for files and directories.

 r - read the file or directory

 w - write or delete the file or directory

 x - execute the file (i.e., run the program) or search the directory

2. Each of these permissions (read, write, execute) must be defined for three

types of users:

 u - the user who owns the file (in your account, you own the files)

 g - members of the group to which the owner belongs

 o - all other users

13

3. The access permissions for all three user types are defined in one string of

nine characters.

 user group others
 r w x r w x r w x

4. To view access permissions for files and directories, use the “ls –l”

command.
drwx------ 4 jordan user 1024 Oct 5 20:05 Classes
drwxr-xr-x 2 jordan user 1024 Jun 18 12:19 mr4416
-rw-r--r-- 1 jordan user 1161 Nov 21 2000 seaspace.txt
-rwxr--r-- 1 jordan user 1226 Aug 8 2000 tscaneagle

• The “d” means that “Classes” and “mr4416” are directories.
• “seaspace.txt” and “tscaneagle” are files, not directories, as indicated

by the first dash “-“.
• The user permissions are in blue, group in red, and others in green.
• For directory “Classes”, only the user/owner “jordan” has permission

to access.
• For directory “mr4416”, only the user/owner “jordan” has full

permissions, and “group” and “other” users can access the directory,
but cannot write or delete any file.

• The file “seaspace.txt” may be read by “group” or “other” users, but
not written, deleted, or executed.

• The “tscaneagle” file is a program that the owner can execute (or run).
Only the owner can execute this program, but “group” or “other” users
can read the program code.

5. Directory rules:

• For anyone other than the owner to access the files in that directory,
the “group” or “other” permissions must be set to “r-x”.

• Separate permissions are defined for each file located in each
directory.

• The “mkdir” command, which defined a new directory, automatically
sets the permissions as: drwxr-xr-x.

6. Security rule: do not allow “group” or “other” users write/delete “w”

permission for any file or directory.

7. The permissions defined automatically to any newly created file are:
-rw-r--r--.

14

8. Unlike DOS, where executable programs are automatically recognized by the

file extension “.exe”, UNIX has not automatic recognition of executable files.

In UNIX, the file permission must be set to “x”.

• Use the “chmod” command to manually set a program to be a UNIX
executable program.

• Allowing someone other than the owner to execute a program can
cause problems, especially when a program creates or overwrites files
in the owner’s account. Don’t give “group” or “other” user execution
permission.

• If another user needs to share this program, the other user can copy the
program to the other account, set “x” permission, and run the program.

9. Examples using the “chmod” command:

• Example 1. To give yourself permission to execute a program, “file1”,
that you own:

chmod u+x file1

• Example 2. To give members of your group permission to read a file,
“file2”:

chmod g+r file2

• Example 3. To give read permission to everyone (all) for files with
file extension “.pub”, use chmod with “a”, which indicates “all”: “u”,
“g”, and “o”:

chmod a+r *.pub

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

II. INTRODUCTION TO MATLAB

A. TEXTBOOK

The textbook referenced in these notes is:

 “Getting Started with MATLAB5” by Rudra Pratap
Oxford Press, 1999. ISBN 0-19-512947-4

B. HOW DOES MATLAB WORK?

• MATLAB commands can be manually entered one at a time on the command
line.

• MATLAB compiles the command and then executes the command
immediately.

• A compiler converts the commands into machine language that the
computer can understand. Execution of the commands is a separate step.

• FORTRAN and other programming languages compile a set of commands
(a program) together and all the program commands are executed
sequentially.

• MATLAB stores the output of the command in a workspace in computer
memory. The workspace can be accessed and modified by subsequent
commands.

• Programs in other languages make temporary use of computer memory
and immediately after the program finishes the memory is cleared and
released for other use.

• The result of the computations or other program output must be written to
the screen or written to a computer file (typically ASCII text). Commands
to write the output to the screen/file must be included in the same program
with the equations.

• MATLAB automatically assigns the variable type as double precision, real or
complex numbers. This preallocates memory space. Double precision is extra
bytes of memory which allows a greater number of significant digits to be
stored.

17

• In other languages, the programmer must predefine the variable type as
integer, real, double precision real, complex, double precision complex, or
binary.

• In MATLAB, a real number or an integer is stores it as a double precision
real number.

• If the value of a variable is changed to be complex, MATLAB
automatically changes the variable type to be a double precision complex
number.

• Examples of variable types:

Complex number: 17.592345 - 157.662000i

 Real number: 17.592345
 Integer: 17 (not 17.0, which is a real number)
 Purely imaginary: 0.0 + 592.123456i

• MATLAB dynamically allocates variables as multi-dimensional arrays.

• In other languages, the programmer must specify the exact size of array
variables at the beginning of the program and the matrix size cannot be
changed in the program.

• MATLAB allows the user to change the size of the array variable at any
time and add/delete rows and columns.

• MATLAB provides built-in functions for array reshaping and other
manipulations (text, section 3.1.3).

• MATLAB automatically displays the contents of variable to the screen, using
a default format for number of significant digits displayed.

• Using the semicolon ";" will suppress the screen display.

• Complex numbers are displayed as in complex format, but if there is no
imaginary part to the number, only the real part of the number is
displayed.

• Using the format command (text, p. 11), the user can change the automatic
output format.

• MATLAB allows UNIX or PC operating system commands to be issued from
the command line. Some commands to list files or change directory are built-

18

in commands (text, p. 14). For example, the following UNIX commands
work in MATLAB: pwd, ls, ls -l, cd, cd ..

• Other operating system commands may be issued from the command line,
but must be preceded by an exclamation point. Examples are:

!jot myprogram.m
!rm oldfile.txt
!cp /home/usr6/mr2020/plot_sounding.m myplotsnd.m

C. STARTING MATLAB

• Starting MATLAB from the UNIX menu creates a MATLAB command
window (text, p. 9) and points to the user's home directory as the first
directory in the MATLAB search path for program files. Use the cd
command to change directory, as needed.

• From a UNIX shell (winterm), type matlab at the UNIX prompt. The
command window points to the directory the user is in when starting
MATLAB.

D. USING MATLAB AS A CALCULATOR

• At the prompt in the command window, a valid equation can be entered and
computed. If no variable name is assigned, MATLAB uses the default
variable name "ans" (meaning answer) to store the result in the workspace.
Example:

>> 145/16 + 355.4*6

ans =
2.1415e+003

19

E. ASSIGNING VARIABLE NAMES

1. To store any value in memory for future use, a variable name is assigned to the

number. The user refers to the variable name and the computer extracts the

number from memory and uses it.

2. The form of an assignment statement is:

VariableName = EXPRESSION

where expression can be a constant, another variable or a formula (math
expression). The variable name is always on the left side of the equal sign.

3. The equal sign in the assignment statement does not mean equality. The

expression (right hand side) is evaluated and the result is stored in the memory

location denoted by the variable name.

4. Variable names can be reused -- the new number replaces the current value in the

memory location.

• Example1.

X = 5 … 5 is stored in memory allocated to variable X
X = 125 … 125 replaces 5 as the value stored in memory for X

• Example 2.

N = 20
N = N + 1 … expression N+1 is evaluated and the result (21)

 is stored in N, replacing the old value (20).

5. Variable names must start with a character (not a number). The maximum length

is 31 characters. MATLAB is case sensitive; X and x are different variable

names. The underscore can be used in a variable name. Examples:

VALID: Sounding_OAK_21Jun99
VALID: X12
VALID: Pressure
VALID: temperature_C

 INVALID: 21Jun99_sounding
20

6. Use only one variable name on the left side of the equal sign. Examples of valid

and invalid assignment statements.

 INVALID: 5 = N … reason: 5 is not a valid variable name

 VALID: N = 5

 INVALID: A + 10.3 = LENGTH … only one variable left of = sign
VALID: LENGTH = A + 10.3

7. There can be only one equal sign in each assignment statement. To assign two

variables to be equal to a third variable, do this in two assignment statements.

INVALID: A = B = C … only one equal sign in an assignment
VALID: B = C

 A = B (two statements)

F. WORKSPACE ENVIRONMENT

1. MATLAB stores workspace variables in active memory.

2. Variables are listed with the who or whos commands (see text, p. 14).

3. Workspace variables can be deleted with the clear command (p. 14).

G. SAVING THE WORKSPACE

1. MATLAB can save the workspace for future work sessions, using the save

command (test, p. 12 and 69). The workspace is saved as a binary file that

can only be read by MATLAB. The file extension of these binary files is

“.mat ”.

2. The user must define the file name for the binary “.mat” file.

3. The user may save all variables or specify certain variables to be saved to the

“.mat” file.

4. The binary files can be quite big.

21

H. RELOADING THE WORKSPACE

1. The load command is used to load a binary “.mat” file into the active

workspace (text, p. 12 and 69).

2. If the same variable name is used in the current workspace and in the “.mat”

file to be loaded, the current value of the variable will be overwritten by the

variable loaded in from the “.mat” file.

• Example: x = 5 in the current workspace, but x = 25 in “file1.mat”.

After the command “load file1.mat”, variable x contains the value 25.

• If you do not know the variable names used in a “.mat” file, load the

file into an empty workspace.

22

III. ORDER OF PRECEDENCE

1. Complicated equations are evaluated using rules called the order of

precedence.

2. A programmer needs to use sufficient numbers of parentheses to ensure the

computer evaluates the equation in the order the programmer intends.

3. Parentheses are not always needed, but the programmer must know how the

equation will be interpreted by MATLAB.

4. For example, how should MATLAB interpret the equation: Z = X-4/Y

• Does the programmer mean: Z = X-(4/Y) , or Z = (X-4)/Y

• Without any parentheses, MATLAB will compute: Z = X-(4/Y)

5. If the programmer intended Z=(X-4)/Y, but typed Z=X-4/Y, then the

programmer will obtain an unanticipated result because MATLAB will

compute precisely what is programmed. Hopefully, the programmer will

properly test the program to notice this mistake. MATLAB will not generate

an error message in this case. MATLAB was given a valid equation.

6. An error message will be generated if parentheses in the equation are not

properly matched – equal number of left and right parentheses. MATLAB

cannot understand the equation if parentheses are not matched.

23

7. Given an equation, the operations performed using the following rules:

1. Parentheses are evaluated first. For equations with multiple parentheses,

the innermost parentheses evaluated first. Within each set of parentheses,
expressions are evaluated using the three precedence levels listed below.

2. There are three Precedence Levels. Operations at the same level are

preformed from Left to Right. Level 1 is the highest precedence.

Level 1: Power: ^

Level 2: Multiplication: * , Division: / (forward slash is
"normal" division)

 Note: recommend students not use the other

division operator \ (back slash).

Level 3: Addition: + , Subtraction: -

• Order of Precedence Example:

() 1
15

153 2 −
+

− Text, p. 21, question 1.

3* (sqrt(5) - 1) / ((sqrt(5) + 1) ^2) - 1 ... Correct MATLAB equation

3* (sqrt(5) - 1) / ((sqrt(5) + 1) ^2) -1
 … innermost parentheses evaluated first

3* (sqrt(5) - 1) / (3.2361 ^2) - 1 … outer parentheses evaluated second

3* 1.2361 / 10.4723 - 1 ... multiplication evaluated third (Left operation)

3.7083 / 10.4723 - 1 ... division evaluated fourth

0.3541 - 1 ... subtraction evaluated last

Answer: -0.6459

24

Note 1: To avoid worrying about Left to Right evaluation of
multiplication and division (since they have equal precedence), add
another set of parentheses to enclose the entire numerator:

(3* (sqrt(5) - 1)) / ((sqrt(5) + 1) ^2) - 1

(3* (sqrt(5) - 1)) / ((sqrt(5) + 1) ^2) - 1

... innermost parentheses evaluated first

(3* 1.2361) / (3.2361 ^2) - 1 ... outer parentheses evaluated second

3.7083 / 10.4723 - 1 …division evaluated third

0.3541 - 1 ... subtraction evaluated last

Note 2: Parentheses around the entire fraction would clearly identify that it
is evaluated first before subtracting one:

((3* (sqrt(5) - 1)) / ((sqrt(5) + 1) ^2)) - 1

25

IV. MATRIX OPERATORS

A. OVERVIEW

Matrix operators follow the rules of Linear Algebra. The examples presented here are the
typical uses of matrix operators in Meteorology and Oceanography. Consult MATLAB
documentation for a complete list of matrix operators.

The following matrices have been defined. A and B are square matrices with dimensions
2 rows by 2 columns. S is a 1 row by 1 column matrix, called a scalar.

[]11
2221

1211

2221

1211 sS
bb
bb

B
aa
aa

A =







=








=

B. MATRIX ADDITION AND SUBTRACTION

For matrices with equal dimensions (not restricted to square matrices), addition and
subtraction of matrices is accomplished term-by-term.









−−
−−

=−







++
++

=+
22222121

12121111

22222121

12121111

baba
baba

BA
baba
baba

BA

Addition or subtraction of a scalar is also accomplished term-by-term. In the case of a
scalar, the matrices do not need to be the same size.









−−
−−

=−







++
++

=+
11221121

11121111

11221121

11121111

sasa
sasa

SA
sasa
sasa

SA

C. MATRIX MULTIPLICATION

Two matrices can be multiplied together only if the number of columns of the first matrix
equals the number of rows of the second matrix.

• If X has dimensions 10x20, and Y has dimensions 20x7, then the multiplication

of X*Y is defined and the result is a 10x7 matrix. In this case, Y*X is not
allowed because the number of columns of Y (seven) does not match the number
of rows of X (ten).

26

• For square matrices of equal dimensions, such as matrices A and B, both A*B and
B*A are defined (but yield different results).









++
++

=









++
++

=

2122112121221121

2212121121121111

2222122121221121

2212121121121111

*

*

abababab
abababab

AB

babababa
babababa

BA

Multiplication of a matrix of any size by a scalar is always defined, and S*A = A*S.









=

11221121

11121111*
sasa
sasa

SA

D. MATRIX DIVISION

Matrix division, using either the forward (/) or backward (\) slash, is related to taking the
inverse of a matrix while solving a set of simultaneous equations.

For A and B the same-sized square matrices:

• A / B equals A*B-1 (note: B-1 means inverse of B)
• A \ B equals A-1*B
• For simplicity, use the forward slash.

Division by a scalar matrix is defined only if the scalar is in the denominator:

• A / S is valid -- matrix A divided by a scalar number, s11, is the same as

multiplying A by the scalar quantity (1/s11).
• S / A is not valid.
• S \ A is valid because it equals A / S.
• For simplicity, use the forward slash.

For more detailed information on matrix division, see the MATLAB on-line help topic
arithmetic operators.

27

E. MATRIX EXPONENTIATION

Raising a matrix to a power is only defined for square matrices and uses the operator ^
(caret).

• A^2 means A2, and is A*A.
• A^4 means A4, and is A3*A, or ((A*A) * A) *A.
• (A*D)^2 is only valid if A*D is a square matrix.
• Note: (A*B)^2 is not equal (A^2) * (B^2).

F. EXAMPLES USING MATRIX OPERATORS

Matrix Assignments

>> A = [1 2;3 4]
A =

1 2
3 4

>> B = [40 45; 50 55]
B =

40 45
50 55

>> S = 100
S =

100

Addition and Subtraction

>> C = A+B
C =

41 47
53 59

>> D = A-B
D =

-39 -43
-47 -51

>> E = A+S
E =

101 102
103 104

>> F = A-S
F =

-99 -98
-97 -96

28

Matrix Multiplication

The matrix multiplication operator accomplishes in one command what FORTRAN, C,
and many other languages need four commands to do. H = A*B is the equivalent of
these four separate equations:

>> G(1,1) = A(1,1)*B(1,1) + A(1,2)*B(2,1);
>> G(1,2) = A(1,1)*B(1,2) + A(1,2)*B(2,2);
>> G(2,1) = A(2,1)*B(1,1) + A(2,2)*B(2,1);
>> G(2,2) = A(2,1)*B(1,2) + A(2,2)*B(2,2)

G =
140 155
320 355

>> H = A*B
H =

140 155
320 355

A*B is not equal to B*A:

>> K = B*A
K =

175 260
215 320

Multiplication by a scalar: A*S equals S*A.

>> L = A*S
L =

100 200
300 400

Matrix Division

For simplicity, use the forward slash. The backward slash has a different meaning. "inv"
is the built-in function to take the inverse of a matrix.

>> M = A/B
M =

0.9000 -0.7000
0.7000 -0.5000

>> N = A*inv(B)
N =

0.9000 -0.7000
0.7000 -0.5000

>> P = A\B
P =

-30 -35
35 40

29

>> Q = inv(A)*B
Q =
-30.0000 -35.0000
35.0000 40.0000

Division by a scalar is valid, but dividing a scalar by a matrix is not valid:

>> R = A/S
R =

0.0100 0.0200
0.0300 0.0400

Matrix Exponentiation (Powers)

>> U = A^4
U =

199 290
435 634

>> V = A*A*A*A
V =

199 290
435 634

30

V. ARRAY OPERATORS

A. OVERVIEW

Array operations are unique to MATLAB and extremely powerful. Array operators do in
one step what other languages accomplish in several lines of code. The key is that array
operators perform term-by-term operations.

The following matrices have been defined. A and B are square matrices with dimensions
2 rows by 2 columns. S is a 1 row by 1 column matrix, called a scalar.

[]11
2221

1211

2221

1211 sS
bb
bb

B
aa
aa

A =







=








=

B. ARRAY ADDITION AND SUBTRACTION

There is no difference between matrix and array addition and subtraction. For matrices
with equal dimensions (not restricted to square matrices), addition and subtraction of
matrices is accomplished term-by-term.

C. ARRAY MULTIPLICATION

Two matrices which are the same size can be multiplied together using the " .* " array
operator. Matrices do not need to be square.

• Since the operator is applied term-by-term, A .* B and B .* A are equal.









=

22222121

12121111

**
**

*.
baba
baba

BA

• Multiplication of a matrix of any size by a scalar is always term-by-term, so there

is no difference when using the " * " or " .* " operators. Technically, using " .* "
with scalar multiplication is unnecessary, but the operator works.









=

11221121

11121111*.
sasa
sasa

SA

31

D. ARRAY DIVISION

Array division, using either the forward (. /) or backward (.\) slash, is term-by-term
division applied to same-sized matrices (not restricted to square matrices).

• A . / B and A .\ B (do not produce the same result)









=








=

22222121

12121111

22222121

12121111

//
//

\.
//
//

/.
abab
abab

BA
baba
baba

BA

• For simplicity, use the forward slash (. /) operator.

Array division with a scalar matrix is defined when the scalar is in either the numerator
or denominator.

• A . / S is the same as A / S. Technically, using " . / " when the scalar is in the

denominator is unnecessary, but the operator works.









=

22222121

12121111

//
//

/.
sasa
sasa

SA

• S . / A is valid. S / A is not defined, so the " . / " array operator must be used to

compute term-by-term division.









=

22112111

12111111

//
//

/.
asas
asas

AS

• The backward slash (.\) operator works with scalars, but for simplicity, use the

forward slash (. /) operator.

E. ARRAY EXPONENTIATION

Raising a matrix to a power is defined for same-sized matrices and arrays and uses the
operator " .^ ".

• A .^ B and B .^ A are both defined, but produce different results.












=












=

2221

1211

2221

1211

2221

1211

2221

1211 .^.^
aa

aa

bb

bb

bb

bb
AB

aa

aa
BA

32

• A matrix raised to a scalar, A .^ S, requires the use of the " . ^ " operator. It is not
the same as A ^ S, which is a matrix operation.












=

1111

1111

s
22

s
21

s
12

s
11

aa

aa
S.^A

• A scalar raised to a matrix, S .^ A, requires the use of the " . ^ " operator.












=

2221

1211

1111

1111.^
aa

aa

ss

ss
AS

F. NONCONJUGATED TRANSPOSE

The nonconjugated transpose operator, " .' ", applies to matrices of complex numbers.
Given C, a matrix of complex numbers:









++
++

=
idcidc

idcidc
C

22222121

12121111

• The transpose of C, denoted C', reverses the rows and columns and takes the

complex conjugate of each term.









−−
−−

=
idcidc
idcidc

C
22221212

21211111'

• The non-conjugated transpose of C, denoted C .' , reverses the rows and columns

but does not compute the complex conjugate of each term.









++
++

=
idcidc
idcidc

C
22221212

21211111.'

33

G. EXAMPLES USING ARRAY OPERATORS

Matrix Assignments

>> A = [1 2;3 4]
A =

1 2
3 4

>> B = [40 45; 50 55]
B =

40 45
50 55

>> S = 100
S =

100

>> A .* B % this is the same as B .* A

40 90
150 220

>> A * S % matrix or array times a scalar does not need " .* "

100 200
300 400

>> A ./ B % forward slash -- easiest to remember

0.0250 0.0444
0.0600 0.0727

>> A .\ B % backward slash

40.0000 22.5000
16.6667 13.7500

>> A(:,1) ./ B(:,2) % dividing same-sized column vectors

0.0222
0.0545

>> A / S % division by a scalar does not need " ./ "

0.0100 0.0200
0.0300 0.0400

>> S ./ A % scalar divided by a matrix or array requires " ./ "

100.0000 50.0000
33.3333 25.0000

34

>> A .^ B % not the same as B .^ A

1 3.5184e+013
7.179e+023 1.2981e+033

>> B .^ A

40 2025
125000 9150625

>> S .^ A % requires " .^ " operator

100 10000
1000000 100000000

>> A .^ S % requires " .^ " operator

1.0000e+000 1.2677e+030
5.1538e+047 1.6069e+060

>> C = [10+4i 3-2i; 20-6i 0+2i] % define complex number matrix
C =
10.0000 + 4.0000i 3.0000 - 2.0000i
20.0000 - 6.0000i 0 + 2.0000i

>> C' % " ' " is the complex conjugate transpose

10.0000 - 4.0000i 20.0000 + 6.0000i
3.0000 + 2.0000i 0 - 2.0000i

>> C.' % " .' " is the non-complex conjugate transpose

10.0000 + 4.0000i 20.0000 - 6.0000i
3.0000 - 2.0000i 0 + 2.0000i

35

VI. SIMPLE DATA INPUT AND OUTPUT

A. METHODS TO INPUT DATA INTO MATLAB

1. Enter data values manually from the command line.

1. Use the “input” built-in function.

2. Use the “load” built-in function:

• Load a binary “.mat” file.
• Load an ASCII text file with data in columns.

i. File without text header lines (i.e. only has data)
ii. File with text header lines with “%” in the first column

(MATLAB will skip lines starting with the “%” symbol).

3. Read data from an ASCII file with “fscanf” or other built-in functions.

B. “input” FUNCTION

1. The “input” built-in function prompts the user to enter data and stores the

input values in the specified variable name.

• The function prints a specified character string to the screen, and waits

for the user to enter the data.

• Multiple data values may be entered at one time by defining a vector

(data in square brackets).

• If the user strikes the “Return/Enter” key without an input value,

MATLAB will automatically assign empty matrix to the variable.

• Unless specified to be a character string, MATLAB will interpret the

input value as a number.

x = input('prompt')

2. There are two ways to enter a character string using the “input” function.

• Specify the input be interpreted as a character string using the 's'
option.

x = input('prompt','s’)

36

• Do not use the 's'option, but enclose the character string in single
quotes.

Example 1:

 A. Input one numerical value:

>> T = input('Enter the temperature (C): ')

Enter the temperature (C): 18.3

T =
18.3000

 B. Input multiple numerical values:

>> TD = input('Enter the dew point (C): ')

Enter the dew point (C): [14.5 17.2 13.5]

TD =
14.5000 17.2000 13.5000

Example 2:

 Input one character string without using single quotes:

>> filenm = input('Enter the file name: ', 's')
Enter the file name: sounding_10Jan2002.txt

filenm =
sounding_10Jan2002.txt

Example 3:

 Input one character string using single quotes:

>> filenm = input('Enter the file name: ')

Enter the file name: 'sounding_10Jan2002.txt'

filenm =
sounding_10Jan2002.txt

37

Example 4:

 Input multiple character string using single quotes:

>> filenm = input('Enter the file name: ')

Enter the file name: ['snd1.txt';'snd2.txt']

filenm =
snd1.txt
snd2.txt

C. DISPLAYING VALUES TO THE SCREEN

1. MATLAB automatically displays the contents of variables to the screen,
unless the output is suppressed with a semicolon (text, p. 10).

2. The “format” command is used to specify the format in which numbers are

automatically displayed on the screen (test, p. 11).

3. To display the values stored in a variable in memory, type the name of the

variable without a semicolon. For a matrix or array, all values are displayed
to the screen.

4. Text strings and matrices can be displayed to the screen using the “disp”

built-in function, with the format as specified with the “format” command.

5. The “sprintf” command provides the user with specific control over the
format of display numbers and text displayed to the screen. This command is
covered later in these notes.

D. “disp” FUNCTION

1. The “disp” function displays a matrix, without printing the matrix name. If
the matrix contains a text string, the string is displayed.

2. Text strings may be displayed using the “disp” function, without defining the

string in a matrix.

3. The “disp” function is useful in programs (M-files) to display messages to the

screen during program execution.

38

4. Typical usage: disp(X)

Example 1: X is a 3x2 matrix.

>> X=[10.5, 100.2; -9.25, 0; 22.3, -75.66]

>> disp(X)

10.5000 100.2000
-9.2500 0
22.3000 -75.6600

Example 2: X is a row vector.

>> X=[10.5, 100.2 -9.25, 0]

>> disp(X)

10.5000 100.2000 -9.2500 0

Example 3: X is a column vector.

>> X=[10.5; -9.25; 22.3]

>> disp(X)

10.5000
-9.2500
22.3000

Example 4: X is a text string.

>> X=[’This is a text string’]

>> disp(X)

This is a text string

Example 5: Display a text string without defining a matrix.

>> disp(’This is a text string’)

This is a text string

39

Example 6: Messages displayed during execution of a program (M-file).

disp('loading data')
more lines of code

disp('calculating potential temperature')
more lines of code

disp('ending the program')

Example 7: Display a matrix of data with column labels. “temp” and
“dewpt” are column vectors with the same number of elements.

disp('Temperature Dew Pt')

disp([temp dewpt])

Temperature Dew Pt
16.0000 7.0000
14.0000 3.0000
12.4000 3.4000
11.6000 3.6000
11.1600 3.1600
9.1900 1.1900
8.0000 0
6.9900 -0.4200
4.4300 -1.4800
2.2000 -2.4000

40

VII. SEARCH PATH

A. WHAT IS A “SEARCH PATH”?

1. MATLAB has a search path, which is the list of locations to search for
M-files. If you enter a command, such as >>fox, MATLAB will:

a. Look for fox as a variable.
b. Check fox as a built-in function.
c. Look in the current directory for fox.m.
d. Search the directories specified by path for fox.m.

2. The “path” built-in function prints out the current setting of MATLAB's

search path. >> path

3. The search path list originates from the environment variable “matlabpath”,

which has been defined to point to one user local directory, and the
subdirectories containing MATLAB built-in functions and toolboxes.

4. Directories in the path are searched in order listed by “matlabpath”.

5. The first directory listed in the search path is the user’s home directory:

• On IDEA and Graphics Lab UNIX workstations:

 /h/mrhome1/username

• On a campus network PC: H:\username

• On a personal PC, with MATLAB installed on the hard drive, the start

directory is defined in the start-up file. Typically this location is:

 C:\matlabr12\work

6. Users may need to add directories to the search path to access user-written or
course-provided programs.

7. On a personal PC, with MATLAB installed on the hard drive, the user may

permanently add paths, which will be automatically available the next time
MATLAB is started.

8. The default settings for student accounts using the NPS network MATLAB

6.0 software, both in UNIX and Windows 2000, does not allow paths added
during one session can be saved and automatically available the next time the

41

user starts MATLAB. Student accounts can be modified to allow this to
occur. See the course instructor for details.

B. ADD OR REMOVE A PATH

1. The “addpath” built-in function provides a temporary change to the path and
available until the user ends the MATLAB session. This function may be
invoked at the command line or in a program (M-file).

addpath H:\username\matlabprograms\

2. Unless otherwise specified, the path is added as the last directory searched.

To make the added path the first directory searched, use the option –begin.

addpath H:\username\matlabprograms\ -begin

3. If a particular user program calls programs located in another directory, using

the “addpath” function in the user program will add the other directory to the
current path. The examples above will work in a program.

4. Typically, a user will only want to remove local directories from the path, not

directories containing built-in functions. Use the “rmpath” built-in function.
Since “addpath” is only a temporary change, students may never need to
remove a path.

rmpath H:\username\matlabprograms\

5. The “File” menu in the upper left corner of the MATLAB 6.0 command

window contains a menu called “Set Path”. This menu allows the user to add
and remove paths, as well as change the directory order of the search path.

• The option to save the new path settings works if MATLAB resides on

the PC hard drive. The save option will work on UNIX or campus PC
network versions on MATLAB 6.0 only if student accounts are
modified. See the course instructor for details.

42

VIII. M-FILES

A. WHAT IS AN “M-FILE”?

• M-files are ordinary ASCII text files, which contain a set of MATLAB
commands to be executed in the order listed. An M-file is a MATLAB
program.

• The file extension of all M-files must be “.m”. Example: lab4.m

• MATLAB will only recognize file names ending with “.m” as a program
to execute (e.g., if MATLAB commands are listed in “lab4.txt”,
MATLAB will not execute the commands in this file).

• Use a text editor to create an M-file.

• There are two types of M-files:

• script (regular) files

• function files

B. SCRIPT M-FILES

• Refer to the textbook, section 4.1, pp. 77-80.

• Execute a script M-file by typing the name of the file (with the “.m”) on
the command line. This is the equivalent of typing each command in the
file, one-at-a-time, at the command prompt.

• To execute a script M-file called lab4.m, type:

 >>lab4 (not lab4.m)

• The script file uses variables already defined in the workspace. Additional
variables defined in the script are added to the current workspace and are
available for use after the script finishes execution. For example:

• Workspace variables: A, B, C

• Script M-file, lab4.m, defines variables X, Y and Z.

• After lab4.m finishes execution, the workspace variables are A,
B, C, X, Y, Z.

• Script M-files may include lines of code which execute other script or
function M-files.

43

C. FUNCTION M-FILES

• The first two lines of a function file have a mandatory format, which
distinguishes it from a script M-file.

• Functions are programs that can be executed many times. Storing the
code in a file prevents a programmer from repeatedly adding the same
lines of code to a script file.

• Functions are executed differently than a script M-file.

• A function uses variables already defined in the workspace.

• Only variables identified to be output from the function are stored
in the current workspace.

• Additional variables defined in the function, but not designated for
output, are not added to the current workspace.

• All other variables in the function workspace are deleted after the
function executes.

• Functions will be covered in great detail later in the course notes.

D. RULES APPLYING TO BOTH SCRIPT AND FUNCTION M-FILES

• The names of an M-file must begin with a letter, and can be no longer than
19 characters.

• Do not use a period anywhere in the name except “.m”.

• Avoid script names that clash with built-in function names, (sin, cos, etc.)
or predefined variable names, such as pi.

• Never name the script or function file the same name as the variable it
computes (text, p. 79).

• Programmer comments can be added to MATLAB code. Use the percent
sign (%) preceding any comments in the code.

• Typically % is in column 1 of a comment line.

• A short comment can be added after the command. For example:
mix_ratio=(0.622*e_mb./(Pres -e_mb); % mix_ratio in kg/kg

• The M-file must be located in directory listed in the MATLAB path.
Otherwise, MATLAB will not be able to find the file.

44

E. HOW TO CREATE AN M-FILE

• M-files can be created and edited with any ASCII text editor. The file is
saved as text with “.m” as the file extension.

• In the IDEA and Graphics Labs, use “jot” or “nedit” text editors.

• In Windows, use the “Notepad” text editor.

• MATLAB version 6.0 has a built-in file editor.

• Use the “open folder” icon to open an existing M-file.

• Use the “blank page” icon to open a blank (new) M-file.

• MATLAB’s text editor uses color to highlight comment lines, text
strings, certain programming commands, such as “if”, ”else”, and
“end”. This is helpful for a programmer.

• There is no difference between files created with a built-in or external text
editor. Use the editor that is easiest for you.

• Since the MATLAB 6.0 is part of the campus network, sometimes
opening, closing, and saving files may be slow if the network is slow.

• Save your work every few minutes, in case of a computer problem.

• At times, a network crash will cause you to lose the file you are currently
editing. If it is an extremely important file, save it occasionally with a
different file name. At worst, you may lose the current file, but an older
version, with a different file name, still exists because it was not open at
the time of the crash.

F. WHY USE A SCRIPT M-FILE?

• A script M-file executes faster than if each command was entered one-by-
one at the command line.

• An M-file provides a record of the commands used to produce a result.

• M-files can be edited to correct mistakes or modify for additional use.

• M-files can be shared with other users.

G. CREATING AND TESTING A SCRIPT M-FILE

• The copy and paste options allow commands to be copied from the
command window to and from the M-file. This makes creating and
testing easy.

45

• This is an example of how to create and test a script M-file:

• Clear your workspace.

• Type a few commands one-by-one in the command window.

• Debug the commands, as necessary.

• Copy each command to a blank text editor file.

• Make sure the MATLAB prompt “>>” is removed from the
M-file. Copy only the command, not the workspace result
of the command.

• Save the file as an M-file.

• Clear your workspace and execute the M-file.

• If the results are not correct, make corrections to the M-file.
Then, clear your workspace and re-execute the M-file.

• Don’t continue building your M-file until the first set of
commands works.

• Create and test more commands in the command window, then
copy them to the M-file. Test and debug the M-file.

• Continue this process until the M-file is completed. Then, clear
the workspace and test it one last time.

• Document the purpose of the program, variable names: meaning
and units (knots, m/s, etc.), and program logic.

• Selected portions of a script M-file may be tested by copying the files
from the M-file and pasting them, which executes the block of code, in the
command window.

H. PROGRAMMING TIP

While a script M-file will can access whatever variables exist in the workspace
when it is executed, it is smart programming form to include variable assignment
statements, load commands, etc., in the M-file itself.

• This will allow the script M-file to execute independently in an
empty workspace.

• Provides a record of which “.mat” files, or data sets the script is
designed to use.

• If the workspace must be externally generated (workspace already
exist before the script is executed):

• The programmer should consider whether the script M-file
should be restructured to become a function M-file.

46

• Extensive documentation about the workspace
requirements must be included in the script M-file.

I. DOCUMENTATION REQUIREMENTS FOR SCRIPT M-FILES

• All script M-files for this course must have the following documentation
information at the top of each file:

• Comment lines start with the percent sign (%) in column 1

• Line 1: name of the script M-file (e.g., file = lab4.m)

• Line 2: student name and date

• Line 3: course number and lab number (if appropriate)

• Purpose of the program.

• List of variable names, description and units (e.g., knots, m/s, etc.)

• List of functions called in the script (if none, state it).

• Additional comment lines may be needed throughout the program to
explain the logic.

• If an equation in the script is from a textbook or journal article, use
comments lines to cite the title, equation number and page number.

• All comment lines in the header block at the top of an M-file must start
with a % sign, even otherwise blank lines.

• The help function will print out the header lines of an M-file until
the first line of the program which does not start with %.

• >>help lab5.m will print the header block of the example
below.

• Blank lines do not need to start with a % sign. Blank lines may be added
to improve readability of the program.

47

• Example:

% filename = lab5.m
% Mary Jordan, 9 Oct 96
% MR2020, Lab #5
%
% Purpose: Calculate the mean value of X, store it in Y.
%
% Variables:
% X = data vector
% Y = mean of X
% m = length of X
%
% Functions used:
% length.m (built-in function)
% sum.m (built-in function)
%

X=[10,14,20,-1,25.3,-3,5,6.6];
m = length(X);
Y = sum(X)/m;

48

IX. RELATIONAL AND LOGICAL OPERATORS USING
SCALAR VARIABLES

A. INTRODUCTION

• The relational operators and logical operators are used differently if the
comparison is between scalars or equal-sized arrays.

• The explanation in this section pertains to scalar variables.

• The examples in the textbook, sections 3.2.2 and 3.2.3, apply relational

and logical operators to arrays. This topic is covered later in this
course.

• Relational operators and logical operators are used in expressions which are

part of “while” loops and “if-elseif-else” branching.

• If the expression is true, then specified portions of the program are
executed. Otherwise, those portions of code are ignored.

B. DEFINITIONS

• Logical expressions have a value of true or false.

• true is assigned a numerical value of 1.

• false is assigned a numerical value of 0.

• Logical expressions are defined using relational and logical operators and

scalar variables.

• At first glance, logical expressions look like equations. While equations
assign values to a variable, logical expressions are comparisons between
variables.

• The relational operators are comparisons between two scalar variables or a

number and one scalar variable.

• The result of the comparison is true or false (1 and 0, respectively).

49

• The relational operators are:

< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
= = Equal (no space between = =)
~= Not equal (tilde)

• The logical operators are:

& And
| Or
~ Not

• The logical operators “And” and “Or” compare two expressions, each

expression being either true or false, and the result is a final value of either
true or false.

• For the “And” operator, both expressions must be true for the

comparison to be true.

true & true result is true
true & false result is false
true & false result is false

• For the “Or” operator, only one expression must be true for the

comparison to be true.

 true | true result is true
 true | false result is true
false | true result is true
false | false result is false

• The logical operator “Not” acts on one expression, its value being either true

or false, and the result is to reverse the value of the expression from true to
false, and false to true.

~ true result is false
~ false result is true

50

Example 1: Relational operators: Comparing one variable.

• x < 5 means "is x less than 5?". The answer is true or false (1 or 0).

Assume x = 14.
Expression: x < 5 … is evaluated as false (zero).
Assigned to a variable: A = x < 5 … zero (false) is stored in A.

Example 2: Relational operators: Compound expressions with AND

• Evaluate the equation: 2210 <≤− x

• MATLAB expression: (-10 <= x) & (x < 22)

• This is a compound expression, and each part is evaluated separately.

Assume x = 14.

 -10 <= x ... -10 <= 14 is true
 x < 22 ... 14 < 22 is true
 -10 <= x & x < 22 true & true … result is true

Expression: (-10<=x) & (x<22) … is evaluated as true (1).

Assigned to a variable: B=(-10<=x)&(x<22) … 1 (true) is stored in B.

Example 3: Relational operators: Compound expressions with OR

• Evaluate the equation: 5010 −<≤− yORx

• MATLAB expression: (-10 <= x) | (y < -50)

• This is a compound expression, and each part is evaluated separately.

 Assume x = 14 and y = -25.

 -10 <= x … -10 <= 14 is true
 y < -50 … -25 < -50 is false
 -10 <= x | y < -50 …. true | false … result is true

Expression: (-10<=x) | (y<-50) … is evaluated as true (1).

Assigned to a variable: C=(-10<=x)|(y<-50) … 1 (true) is stored in C.

51

Example 4: Comparisons which include variable expressions

• Evaluate the equation:)
3

10(
2yxz +<

• MATLAB expression: z < (10*x + (y^2)/3)

• Evaluate the variable expression (equation) and compare the result to

the value of z.

 Assume x = 14, y = -25, z = 500.

 (10*x + (y^2)/3) … 348.3

 500 < 348.3 … is false

Expression: (10*x + (y^2)/3) … is evaluated as false (0).

Assigned to a variable: D= z<(10*x+(y^2)/3)… 0 (false) is stored in D.

52

X. LOOPS, BRANCHES AND CONTROL-FLOW

A. INTRODUCTION

• There are basic program logic control-flow and branching statements in
MATLAB, which are similar to logic in other languages. MATLAB has
slightly different construction and syntax, but the logic flow is the same.

• A “for” loop is a set of code executed once using each value assigned to the
“for” loop variable.

• A “while” loop executes while a specified expression is logically true. When
the expression is false, the commands in the loop are not executed.

• An “if-elseif-else” branching is executed only if specified expressions are
true.

• The “while” loop and “if-elseif-else” branching evaluates expressions using
scalar variables which are compared using relational and logical operators,
described in the previous section.

B. “ if ” STATEMENTS

1. Basic "if" Statement

Format of code:

if expression
statement block

end

Figure 1. Flow chart for simple “if” statement.

53

Execution:

• The variables in the expression to be tested must have values assigned prior to

entering the “if” statement.
• The block of code will only execute if the expression is true. If the expression

is false, the code is ignored.
• Values assigned to the variables used in the expression may be changed in the

block of code inside the “if” statement.

Example:

x = 100;
y = -10;

if x < 150
z = x - y^2;
A = x + 12.5*y + z^3;

end

1. "if else" Statement

Format of code:

if expression
statement block 1

else
statement block 2

end

Execution:

• The variables in the expressions to be tested must have values assigned
prior to entering the “if” statement.

• The block #1 of code will only execute if the expression is true.
• If the expression is false, the block #1 code is ignored and the code in

block #2 is executed.
• Values assigned to the variables used in the expression may be changed in

the block of code inside the “if” statement.

54

Figure 2. Flow chart for "if else" statement.

Example:

x = 100;
y = -10;

if x < 150
z = x - y^2;
A = x + 12.5*y + z^3;

else
z = 2*x + y;
A = (x/12.5) - 3*y + z/2;

end

55

2. "if elseif else" Statement

Format of code:

if expression1
statement block 1

elseif expression2
statement block 2

else
statement block 3

end

Execution:

• The variables in the expressions to be tested must have values assigned
prior to entering the “if” statement.

• The block #1 of code will only execute if the expression #1 is true.
• If the expression #1 is false, the block #1 code is ignored and expression

#2 is evaluated.
• The code in block #2 is executed only if expression #2 is true.
• If the expression #2 is false, the block #2 code is ignored and code in

block #3 is executed.
• Only one block of code is executed and transfer of control is to the end

statement. All other lines of code inside the “if” statement are ignored.
• Even if subsequent expressions are also true, MATLAB never allows

those statements to be evaluated.
• If expressions 1 and 2 are both true, block #1 is executed and

expression #2 is not even checked.
• Values assigned to the variables used in the expression may be

changed in the block of code inside the “if” statement.

Example:

x = 100;
y = -10;

if x < 150
z = x - y^2;
A = x + 12.5*y + z^3;

elseif x > 150 & x <= 200
z = 2*x + y;
A = (x/12.5) - 3*y + z/2;

else
z = 65 - x/2;
A = x - y + z^2;

end

56

Figure 3. Flow chart for "if elseif else" statement.

57

3. "if elseif " (no else) Statement

Format of code:

if expression1
statement block 1

elseif expression2
statement block 2

elseif expression3
statement block 3

elseif expression4
statement block 4

end

Execution:

• The variables in the expressions to be tested must have values assigned
prior to entering the “if” statement.

• There is no else statement, so no block of code will be automatically
executed if all expressions are false.

• The block #1 of code will only execute if the expression #1 is true.
• If the expression #1 is false, the block #1 code is ignored and expression

#2 is evaluated.
• The code in block #2 is executed only if expression #2 is true.
• If the expression #2 is false, the block #2 code is ignored and expression

#3 is evaluated, and so on.
• Only one block of code is executed and transfer of control is to the end

statement. All other lines of code inside the “if” statement are ignored.
• Values assigned to the variables used in the expression may be changed in

the block of code inside the “if” statement.

Example:

x = 100;
y = -10;

if x < 150
z = x - y^2;
A = x + 12.5*y + z^3;

elseif x > 150 & x <= 200
z = 2*x + y;
A = (x/12.5) - 3*y + z/2;

elseif y > 0
z = sqrt(y);
A = x - 3*y + z;

elseif y <= 0
z = sqrt(-y);
A = x - 3*y + z;

end

58

Figure 4. Flow chart for "if elseif " (no else) statement.

59

C. “ for ” LOOPS

1. Basic "for" loop

Format of code:

for variable = expression

statements to be executed, also called the
"body of the loop"

end

2. Flow chart

Figure 5. Flow chart of a basic “for” loop.

3. “for” Loop Rules

• "for" loops end with the "end" statement (both are lower case).

• The values the loop variable are controlled by the expression.

60

• The first time through the loop, the variable is assigned the first value in the
expression. For the second time through the loop, MATLAB automatically
assigns to the variable the second value in the expression. This continues for each
value in the expression. The loop is automatically terminated after the body of the
loop has been executed with the loop variable assigned to each value in the
expression.

• The body of the loop is executed many times, but the loop is only executed once
for each value in the expression.

• The user cannot change the value of the loop variable in any statement in the
body of the loop. Once the loop starts executing, MATLAB controls values
assigned to the loop variable and will not permit the user to change it.

• After the loop is finished executing, the loop variable still exists in memory and
its value is the last value used inside the loop.

• If the name of the loop variable was already used in the program prior to
execution of the loop, old values of the variable are erased and the values of the
variable are controlled by the loop.

• Any name can be used for a loop variable.

• Many programmers use i, j or k as their loop variable names. These loop variable
names should not be used if the program uses complex numbers (for complex
numbers, i and j are predefined as the square root of -1).

• The expression in a for loop is an array of values (real or complex). The number
of times the loop executes equals the number of values in the expression array.

• The values in the expression array do not have to be integers.

• Typical use of a loop is to count the number of times a set of statements is
executed.

• Loops can be nested.

61

Example 1: Counting with a Loop.

• This loop is used to execute the body of the loop a specified number of
times.

• Loop variable, i, is defined with sequential numbers.

for i = 1:3 % execute three times
x = i^2

end

x =
1

x =
4

x =
9

Example 2: Loop variable with nonsequential numbers.

• This loop is used to execute the body of the loop a specified number of
times.

• Loop variable, i, is defined with nonsequential numbers.

for i = 5:10:35 % expression executes four times

i
end

i =
5

i =
15

i =
25

i =
35

62

Example 3: Nested Loops.

• The outer loop variable is i and the inner loop variable is j.

• The inner loop is completed for each time the outer loop is incremented.

for i = 1:3 % Outer loop

i
for j = 10:10:30 % Inner loop

j
end % end for inner loop

end % end for outer loop

i =
1

j =
10

j =
20

j =
30

i =
2

j =
10

j =
20

j =
30

i =
3

j =
10

j =
20

j =
30

Example 4: Using a loop to populate an array.

• One element of the array is computed and assigned during each execution
of the loop.

• The loop variable is defined with sequential numbers.

for j = 1:10
Y(j) = j ^ 2;

end

Y
Y =

1 4 9 16 25 36 49 64 81 100

63

Example 5: Using nested loops to populate a matrix.

• The inner and outer loop variables, i and j, are used as the row and column
indices of the matrix. A 5x3 matrix will be populated.

• One element of the matrix is computed and assigned during each
execution of the loop.

• The loop variables are defined with sequential numbers.

for i = 1:5
for j = 1:3

X(i,j) = i^2 + j^2;
end

end

X
X =

2 5 10
5 8 13

10 13 18
17 20 25
26 29 34

Example 6: Use an array in the expression for the loop variable.

• The loop variable, i, is defined with nonsequential numbers in array, n.

n = [1 19 31 6];
for i = n

i
end

i =
1

i =
19

i =
31

i =
6

Example 7: Use nonsequential indices to populate an array.

• The loop variable, i, is defined with nonsequential numbers in array, n.

• The array elements not defined in the loop are automatically assigned the
value zero.

• This method to populate an array is not used often.

n = [1 19 31 6];
for i = n

Z(i) = i;
end

64

Z
Z =

Columns 1 through 12
1 0 0 0 0 6 0 0 0 0 0 0

Columns 13 through 24
0 0 0 0 0 0 19 0 0 0 0 0

Columns 25 through 31
0 0 0 0 0 0 31

Example 8: Incrementing a counter without using the loop variable.

• The variable count will be incremented and as a sequential counter.

• The value of count is initialized as zero prior to the execution of the loop.

• The counter is incremented in the body of the loop.

• Any variable name can be used as a counter.

count = 0;

for i = 100: -3: 85
count = count + 1

end

count =
1

count =
2

count =
3

count =
4

count =
5

count =
6

Example 9: Use a counter as an array index.

• The variable count will be incremented and used as the index of the array
being populated.

• The loop variable, which has nonsequential values, is used in an equation
to assign each array element value.

count = 0; % counter initialized outside loop

for i = 100: -3: 85
count = count + 1; % counter incremented
X(count) = i * sin(pi/4); % counter used as array index

end

X
X =

70.7107 68.5894 66.4680 64.3467 62.2254 60.1041

65

D. “ while ” LOOPS

1. Basic "while" loop

Format of code:

while expression is true

statements to be executed, also called the
"body of the loop"

end

2. Flow chart

Figure 6. Flow chart of a basic “while” loop.

66

3. “while” Loop Rules

• Must have a variable defined BEFORE the "while" loop, so you can
CHECK it to enter the loop.

• The variable in the while statement must change INSIDE the while loop,
or you never exit the loop.

• After the loop is finished executing, the loop variable(s) still exist in
memory and its value is the last value the variable had in the while loop.

Example 1: Basic “while” Loop.

• The loop variable, x, is defined before entering the loop.

• The value of x changes within the loop.

• When x = 120, the test x <= 100 fails, so the loop is exited.

• The loop executes four times.

x = 0;
while x <= 100

x = x +30
end

x = 30
x = 60
x = 90
x = 120

Example 2: Use a “while” loop for interactive input.

• The loop variable, flag, is defined before entering the loop.

• Loop variable, flag, changes due by user input.

• The loop executes until the user enters a value of flag not equal to zero
(while the instructions say to enter 1 if the values are correct, any nonzero
value entered will cause flag = = 0 to be false).

flag = 0;
while flag == 0

pres=input('Enter pressure: ')
tmpk=input('Enter temperature in K: ')
infile=input('Enter input filename: ','s')
flag=input('Are these values correct? Answer 1 or 0, 1=yes, 0=no: ')

end

67

Example 3: Use a counter for a “while” loop.

• The loop variable, i, is defined before entering the loop.

• The value of i is incremented in the loop.

• Variables x and y, used in the loop, must be defined prior to entering the
loop.

• This loop executes exactly 50 times. Since i =1 to start the loop, the test is
for i <= 50.

x = 10;
y = 20;
i = 1; % Initialize the counter

while(i <= 50)
x = x+(y^2) % Calculate x
i = i + 1 % Increment the counter

end

Example 4: Use a counter for a “while” loop; variation of Example 3.

• The loop variable, i, is defined as zero before entering the loop.

• The test is for i < 50.

• This loop executes exactly 50 times.
x = 10;
y = 20;
i = 0; % Start with i = 0

while(i < 50) % New expression -- test for i < 50
x = x+(y^2) % Calculate x
i = i+ 1 % Increment the counter

end

68

E. “break” COMMAND

• The purpose of the “break” command is to exit a “for” or “while” loop
prior to the normal termination of the loop using the loop variable.

• Typical usage is for the “break” command to be issued within an “if”
statement after a specified criterion is met.

• The “if” statement is in the body of the loop, and exit is immediate
from the loop.

• The next MATLAB command executed is the first command after
the “end” statement of the loop being exited.

• If the loops are nested and the break command is issued in the inner loop,
the exit is from the inner loop, and execution continues in the outer loop.

Example 1: Break from inside one while loop.

i = 3;
j = 5;
while j <= 10

z = (i^5) + 4*((j+2)^3);
if z > 3500

s=sprintf('Exiting loop, i= %i j= %i z = %i ',i,j,z);
disp(s)
break

else
s=sprintf('stay in loop, i= %i j= %i z = %i ',i,j,z);
disp(s)

end
j = j+1;
i = i+1;

end
s=sprintf('Outside of While Loop, i = %i',i); disp(s)

MATLAB Results:

stay in loop, i= 3 j= 5 z = 1615
stay in loop, i= 4 j= 6 z = 3072
Exiting loop, i= 5 j= 7 z = 6041
Outside of While Loop, i = 5

69

Example 2: Break from inside the inner loop of two nested while loop.

i=5;
while i <= 8

x = 2 + (i^4);
j = 3;
while j <= 10
z = x + 4*((j+2)^3);
if z > 3500

s=sprintf('Exiting inner loop, i=%i j=%i z= %i ',i,j,z);
disp(s)
break

else
s=sprintf('stay in loop, i=%i j=%i z= %i ',i,j,z);
disp(s)

end
j = j+1;

end
i = i+1;

end
s=sprintf('Outside of Outer Loop, i = %i',i); disp(s)

MATLAB Results:

stay in loop, i=5 j=3 z= 1127
stay in loop, i=5 j=4 z= 1491
stay in loop, i=5 j=5 z= 1999
stay in loop, i=5 j=6 z= 2675
Exiting inner loop, i=5 j=7 z= 3543
stay in loop, i=6 j=3 z= 1798
stay in loop, i=6 j=4 z= 2162
stay in loop, i=6 j=5 z= 2670
stay in loop, i=6 j=6 z= 3346
Exiting inner loop, i=6 j=7 z= 4214
stay in loop, i=7 j=3 z= 2903
stay in loop, i=7 j=4 z= 3267
Exiting inner loop, i=7 j=5 z= 3775
Exiting inner loop, i=8 j=3 z= 4598
Outside of Outer Loop, i = 9

70

XI. FUNCTIONS

A. INTRODUCTION

Functions M-files are different from script M-files. Functions are blocks of code that

need be executed many times. Functions can be executed in script M-file or by other

functions. The following terminology is used in these notes:

• The command to execute a function is also referred to as a command

“invoking a function” or “calling a function”.

• A main program is typically a script M-file that calls one or more
functions, but the term may also apply to a function that calls another
function.

B. ADVANTAGES OF USING FUNCTIONS

• Break your program into separate tasks (modular programming).

• Write the code once, test it, and use it many times.

• The main program, which calls the function(s), is easier to read.

• Keeps the interactive MATLAB workspace free of unnecessary variables.

• Share functions with other programmers.

C. DISADVANTAGES OF USING FUNCTIONS

• Functions are harder to test because the local variables, which may be
needed for debugging, are not passed to the interactive MATLAB
workspace.

• Increases the number of M-files to keep track of in your directory.

71

D. REQUIRED ELEMENTS AND EXECUTION OF A FUNCTION M-FILE

1. The first line of function M-file has a mandatory structure. It has the word
function in it, which identifies the file as a function, rather than a script M-file.

2. The first line contains the following elements, listed in the order they must appear

in the line:

• The word “function”
• The output variables of the function enclosed in square brackets and

separated by commas. If the function has no output variables, the
square brackets are omitted.

• The name of the function, which exactly matches the name of the file
(function name is abs_error, and the file name is abs_error.m).

• The input variables of the function enclosed in parentheses and
separated by commas. If the function has no input variables, the
parentheses are omitted.

3. For example, the first line of a function named abs_error.m is:

function [X,Y] = abs_error(A,B)

4. A block of comments should be placed at the top of the function M-file just after
the function definition line. This is the header comment block includes the “H1”
line and the comments to be viewed with the help command.

5. The “H1” line is the second line of the M-file, immediately after the function

definition line. The “H1” line should contain keywords, which the built-in search
function, “lookfor”, uses. The “H1” line is not the same as the comment line
describing the purpose of the function. However, the keywords in the “H1” line
will also be used in the description of the purpose of the function.

6. Textbook section 4.2, p. 80-86, provides more details on functions, which are not

included in these notes. Students are responsible for the information in this
section of the textbook, except for the subsection on “feval” function, p. 85.

72

7. All function M-files for this course must have the following documentation
information at the top of each file, as demonstrated in this example:

function [CHILL_C] = wchill(TC,WS_ms)
% wind chill temperature, NWS formula
% Purpose: Calculate wind chill using new NWS formula
%
% Input Variables:
% TC = Temperature (deg C)
% WS_ms = Wind Speed (m/s)
%
% Output Variables:
% CHILL_C = Wind Chill Temperature(deg C)
%
% Local Variables:
% WS_kts = Wind Speed (knots)
% WS_mph = Wind Speed (mph)
% TF = Temperature (deg F)
% CHILL_F = Wind Chill (deg F)
%
% Functions Called: None.
%
% Reference: NWS, Service Change Notice 01-49, 30 Aug 2001
%
% Filename: wchill.m
% Written by: M. Jordan, MR 2020, 2/12/02

WS_kts = WS_ms*1.94386; % Convert wind speed from m/s to knots
WS_mph = WS_kts*1.15078; % Convert wind speed from knots to mph
TF = 32 + TC*(9/5); % Convert TC to Fahrenheit
% Calculate wind chill in Fahrenheit, using NWS formula
CHILL_F = 35.74 + 0.6215.*TF –35.75.*(WS_mph.^0.16) + …

0.4275*TF.* (WS_mph.^0.16);
CHILL_C = (CHILL_F -32)*(5/9); % Convert wind chill in F to C

E. FUNCTION VARIABLES: INPUT, OUTPUT AND LOCAL

• When a function executes, a separate area of memory is used for the
function calculations. This memory is separate from the current
MATLAB workspace and it is called the function workspace.

• For script M-files, the variables in the script program are stored in
the current workspace.

• For a function M-file, the input variables from the current
workspace are added to the function workspace. All function
commands are executed in the function workspace.

• The input and output function variables are stored in the current
workspace at the end of the function execution.

• The memory used for function workspace is cleared immediately
after the function finishes execution.

73

• Input Variables are variables from the current workspace, which are
transferred to the function workspace.

• The values of each input variable may be changed during the
execution of the function. Typically, a programmer will not want
to change the values of the input variables during the function
execution, so be careful.

• The input variables are re-stored from the function workspace to
the current workspace at the end of the function execution.

• Output Variables are generated during the execution of the function and
will be stored in the current workspace at the end of the function
execution.

• Only variables designated as output variables in the first line of the
function (in square brackets) will be stored in the current
workspace.

• Local Variables are variables in the function workspace, which are not
designated as either input or output variables.

• Local variables are erased from memory at the end of the function
execution, and cannot be retrieved.

• If a local variable is needed outside the function workspace,
change the function output variable list to include the new variable.
Also change all portions of the main program, which call the
function and add the new variable to the output variable list.

• Global Variables are variables, which can be automatically shared
between the current and function workspaces. Global variables have
significant disadvantages, which outweigh the usefulness in METOC
course and thesis programming. They are not covered in this course and
are not recommended for use.

F. VARIABLES NAMES

• Since the current and function workspaces are separate, the variable names
do not have to match.

• If you are writing the function, use variable names that match those
used in your main program or current workspace.

• If you are using a function that someone else wrote, chances are
the variable names will not match your naming conventions. This
is not a problem.

74

• Using the function example for wind chill (in section D), in the function
workspace the variables are named TC, WS_ms, CHILL_C.

• If the same variable names are used in the current workspace, call
the function with the command:

>>[CHILL_C] = wchill(TC,WS_ms)

• If the variable names in the current workspace are TempC,
Wspeed_ms, WindChill_C, call the function with the command:

>>[WindChill_C] = wchill(TempC,Wspeed_ms)

• The result will be the same.

• MATLAB is passing the memory location information (not the variable
name) to/from the function workspace, so the variable names do not
matter.

• The variable type, size, and units must match between the current and
function workspaces.

• If the function is expecting a scalar variable, do not pass an array
from the current workspace to the function.

• If the function is expecting a column vector, don’t pass a row
vector.

• If the function is written to use temperature array in degrees
Celsius, do not pass it an array in degrees Fahrenheit.

• The function is expecting the input and output variables in a
specific order. If the function is expecting input variables, in
order: Pressure, Temperature, Relative Humidity, do not pass the
variables out of order.

• MATLAB cannot detect variables passed out of order.

• The result will be the wrong answer without any error
messages.

• For example, the first command is correct and the second
command, with an incorrect variable sequence, will produce an
erroneous error, without an error message.

>>[WindChill_C] = wchill(TempC,Wspeed_ms) % correct

>>[WindChill_C] = wchill(Wspeed_ms,TempC) % ERROR!!

75

• The same variables names may be used in the current and function
workspaces, but have different meanings and values. MATLAB is not
confused because only the memory location information is passed between
workspaces.

• This example emphasizes the need for thorough documentation of
variable names and meanings in both a main program and function.

• Documentation keeps the programmer from being confused!

• Local variable names reside only in the function workspace.

Figure 7. Schematic to illustrate that variables names in the current and function
workspaces are connected by passing memory location information, and not the variable
name. Also illustrates that the variable names do not need to match between the current
and function workspaces.

76

Figure 8. Schematic to illustrate the different contents of the current
workspace (top, called “MATLAB Workspace”) and the function
workspace (bottom). Variables A, r, s, are used in both workspaces and
have different array sizes and meanings. Thorough documentation is
needed in the main program, which generated the current workspace, and
the function, so the programmer is not confused by the duplicate variable
names.

77

G. HOW TO WRITE AND TEST A FUNCTION

1. Define what the function will accomplish in pseudocode -- identify the steps.

2. Identify the input, output and local variables.

3. Choose meaningful variable names.

4. Write the lines of MATLAB code first as a script M-file (not as a function). The
name of this M-file is not important.

5. In the interactive MATLAB workspace, test the script M-file.

• Define input variables with test values.

• The input variable names for the test must match the names used in the script

M-file because all the variables are in the interactive workspace (and not
"passed" to the function).

• Run the script M-file. The results of the script M-file, output and local

variables, are computed and reside in the current workspace.

• Check that the steps and equations executed as planned. (The computer
executes precisely what you program it to do, therefore you are checking if the
MATLAB code performs the tasks you outlined in your pseudocode.)

• If the equations use array operations, use arrays as your test variables.

6. Choose a meaningful function name (which is the name of the function M-file).

7. Open a text editor and assign the function filename to the file.

8. Write the first line of the function M-file following the correct syntax:

function [output variables] = filename(input variables)

9. Copy your code from the test script file into the function M-file.

10. Test your function M-file by calling the function from the interactive workspace.

For convenience, use test input variable names that are the same as the names in
the function. However, since you are now passing data to and from the function,
the variable names do not have to match the variable names used in the function.

78

11. Document your function M-file using the guidelines described in section D. Also
include:

• For each variable: identify (1) units (mb, m/s, etc) and (2) type: scalar, array

or matrix.

• Limitations on use of the function. Add comments to remind yourself and
other users of assumptions made which will limit the applicability of this code
for other uses. Many times, the assumptions are due to the physics
represented by the equations and constants.

H. THINGS TO CHECK WHEN CALLING A FUNCTION IN A PROGRAM

1. The function is in your current directory or in the MATLAB path.

2. Input variable lengths and types are appropriate for the function.

• Don't input arrays if the program is written for scalars.
• If variable X is written to be a scalar, don’t input a vector or array.
• If a function does not use array operators, the function will not work for

arrays.
• Arrays must be the correct size and shape.
• Units of the input data match the units used in the function.

3. Input variables in the call statement are listed in the same order as the function.

The variable names are not required to match, but the type of data (temperature,
etc) must match what the function expects.

4. Output variables in the call statement are listed in the correct order; variable
names are not required to match.

5. Main program statement, which calls the function, has the correct syntax.

79

XII. GENERAL PROGRAMMING TIPS

A. VARIABLE NAMES

• Variables should have meaningful names. This will make your code easier to
read, and will reduce the number of comments you will need. However here
are some pitfalls about choosing variable names:

• Meaningful variable names are good, but when the variable name gets to
15 characters or more, it tends to obscure rather than improve code.

• The maximum length of a variable name is 31 characters and all variables
must start with a character (not a number).

• Be careful of naming a variable that will conflict with MATLAB built-in
functions, or reserved names: if, for, while, end, pi, sin, cos, etc.

• Avoid names that differ only in case, look similar, or differ only slightly
from each other.

B. M-FILES

• Make good use of white space, both horizontally and vertically, it will
improve the readability of your program greatly.

• Comments describing tricky parts of the code, assumptions, or design
decisions should be placed above the part of the code you are attempting to
document.

• Do not add comment statements to explain things that are obvious.

• Try to avoid big blocks of comments except in the detailed description of the
M-file in the header block.

• Indent lines of code and comments inside branching (if block) or repeating
(for and while loop) logic structures will be indented 3 spaces.

• Please note: don't use tabs, use spaces.

• No more than one executable statement per line in your script or function M-
files.

• No line of code should exceed 80 characters. (There may be a few times when
this is not possible, but they are rare.) Use the ellipse (…) to continue your
command on the following line.

80

• Be careful what numbers you "hardwire" into your program. You may want to
assign a constant number to a variable. If you need to change the value of the
constant before you re-run the program, you can change the number in one
place, rather than searching throughout your program.

• For example:

% This program "hardwires" the constant 100
% in two places in the code.
for i = 1:100

data(i) = r(i)^2;
end
meanData = sum(data)/100;

% This program assigns the constant value, 100,
% to the variable, n.
n = 100; % number of data points.
for i = 1:n

data(i) = r(i)^2;
end
meanData = sum(data)/n;

81

XIII. PLOTTING WITH MATLAB

A. BASIC PLOT COMMANDS

MATLAB has a versatile plotting package and excellent on-line help. The MR 2020
textbook, “Getting Started with MATLAB 5”, R. Pratap, 2nd Ed, 1999, has an excellent
overview and lots of examples of 2-D and 3-D plots. However, the textbook is written
for MATLAB 5.0-5.2, and there are options of MATLAB 5.3 and 6.0 that the textbook
does not cover. If in doubt, use the on-line help to augment the textbook discussion.

There are several options for accessing on-line help.

• The help command (started interactively) Interactively, will list the help in the
MATLAB command window.

 >> help command

• The MATLAB helpdesk (started interactively) allows for easy access to help
for plotting commands using an Internet browser.

 >> helpdesk

• Both methods list related commands in the “see also” section at the end of the
help discussion. This is a very useful feature.

The instructor-provided M-files of plotting commands used in the lab assignments
provide examples of how to use common 2-D plot commands. Three-dimensional plots
of meteorological data are typically generated in VIS5D, not MATLAB, so 3-D plotting
is not taught in MR 2020. The textbook covers the basics of 3-D plots.

Students should review the following sections of the textbook and, as needed, on-line
help for the commands and topics listed in Tables 3 and 4.

82

Table 3. Basic Plot Commands
MATLAB Command or Topic Textbook Reference or

Helpdesk:
“Using MATLAB Graphics” topic

plot
 plot(Temp,Ht,’r--*’)
 plot(Temp,Ht,’b-‘,DewPt,Ht,’r- -‘)

Sections 6.1, 6.1.1. and 6.1.5

hold on / hold off Section 6.5 and on-line help
line Section 6.5
subplot (multiple plots) Section 6.2
figure
 figure(number)

See on-line help

xlabel Section 6.1.2
ylabel Section 6.1.2
title Section 6.1.2
text Section 6.1.2
gtext Section 6.1.2
legend Section 6.1.2
axis
 axis ij flips vertical axis

Section 6.1.3 -- see on-line help
for newer syntax than in textbook

plotedit Section 6.1.4
Helpdesk: Search for function “plotedit”

propedit Sections 6.1.4 and 6.4
close
 close all

See on-line help

clf … clears current figure See on-line help
Greek symbols in text strings
 ‘ \pi \Pi ‘

Helpdesk: Search for “Greek letters”

83

Table 4.Advanced plotting options: 2-D and 3-D plots.

MATLAB Command or Topic Textbook Reference or
Helpdesk:
“Using MATLAB Graphics” topic

Specialized 2-D plots Section 6.1.6, p. 154-159
help graph2d
help specgraph

3-D plots Section 6.3
help graph3d

plot3 Section 6.3
comet3 Section 6.3
view Section 6.3.1
Mesh and surface plots
 Function: meshgrid

Section 6.3.3

Interpolated surface plots
 Function: griddata

Section 6.3.4

B. HANDLE GRAPHICS

A full discussion of handle graphics is too detailed for this course. The basic plotting
commands are fine for most homework assignments. A brief description is presented of
ways to upgrade the plot quality for formal presentations and thesis figures.

The most common plot elements to change or improve are: line thickness, line color, grid
spacing, grid labels, axis label and title fonts, adding Greek symbols.

There are two ways to accomplish these improvements: (1) interactively using menus
activated in each figure window, and (2) using handle graphics commands in M-files. If
you are making changes to 1-5 plots, you may want to do it interactively. For plotting
style consistency when generating many figures and thesis figures, putting handle
graphics commands in M-files is the preferred method.

Interactive Method: Activate the Plot Edit option on the figure window (click the 5th
icon in the figure toolbar, or choose help). Once plot edit is activated, the Tools menu in
the figure window provides menus to change properties: axis, line and text, and to add:
arrow, line, text. Alternately, click the left mouse button on any line or text and then use
the right mouse button to activate a menu of properties for that line/text.

Handle Graphics Commands: The textbook Section 6.4 covers handle graphics and
provides basic examples (p. 180-183). The helpdesk topic on Handle Graphics is quite
extensive and may be too advanced for many users.

84

Using PowerPoint to change title and axis labels: To make title more readable or to
add Greek symbols (other than the method in Table 3), the easiest way to do it may be in
PowerPoint. Print the figure without title, xlabel and ylabel. Insert the figure into
PowerPoint and add text strings using PowerPoint commands. Group the text and figure
together (PowerPoint option). This new figure can be copied into Word or another word
processor.

Example: A sample program with basic handle graphics commands is included.

• Figure 9 is a plot without any handle graphics changes.

• Figure 10 was plotted with the program, sample_handle_graphics.m,
listed below, which demonstrates basic handle graphics commands.

• Read Section 6.4 to understand the basics of handle graphics and then review
the sample program.

• Most METOC students will not need more sophisticated commands than the
ones listed here.

85

Figure 9. MATLAB plot created without handle graphics commands.

Figure 10. MATLAB plot created with handle graphics commands, using the
program, sample_handle_graphics.m.

86

% file = sample_handle_graphics.m M. Jordan, 2/27/2001, for MR 2020

load handout3.mat % data file

figure
plot(mix_ratio1,Z,'b','LineWidth',2) % change line width in the plot command
hold on
plot(mix_ratio2,Z,'r','LineWidth',2) % change line width in the plot command
grid on
axis([0 .01 0 2100])
legend('0000 UTC','1200 UTC') % must change "parent" properties to

% change the legend font
% ... change axis information .. handle is already known: "gca"
% change the XTick and YTick marks

set(gca,'XTick',[0:.001:.01])
set(gca,'YTick',[0:300:2100])

% ... change Labels of the XTick marks .. handle is already known: "gca"

% Step 1. make an Array of equal length character strings which
% will be the new labels

xaxis_label = ['.000';'.001';'.002';'.003';'.004';'.005'; ...
'.006';'.007';'.008';'.009';'.010'];

% Step 2. change the XTickLabel to the strings in xaxis_label

set(gca,'XTickLabel',xaxis_label)

% ... change the font size/weight for the axes
% NOTE: this sets the font for both x and y axes:
% xlabel, ylabel and numbers on each axis

set(gca,'FontSize',10,'FontWeight','bold')

% ... add legend, title, x and ylabels while allowing the handle information
% (output of the function) to be stored in the defined variable names

handle_title = title('Mixing Ratio, Oakland, 14 Jan 1995')
handle_xlabel = xlabel('Mixing Ratio (kg/kg)')
handle_ylabel = ylabel('Height (m)')

% ... change the fonts for title, and x, y labels
% overwrites the fonts for xlabel, ylabel defined above (10 pt size)

set(handle_title,'FontName','times','FontSize',16)

set(handle_xlabel,'FontName','arial','FontSize',14,'FontAngle','italic')

set(handle_ylabel,'FontName','arial','FontSize',14,'FontAngle','italic')

87

C. PLOTTING A COASTLINE

Obtain Coastline Data: use the Worldwide Coastline Extractor from NGDC

• Download the coastline at: http://rimmer.ngdc.noaa.gov/coast/
• For an input latitude and longitude range, extracts the coastline lat/lon.
• Makes an ASCII text file, readable by MATLAB, of longitude and latitude, which

defines the coastline.
o Must choose the MATLAB format option

• Several coastline databases options.
• Download the ASCII file and rename it with a meaningful name.

Import the Coastline to MATLAB

• Load the ASCII file into MATLAB. Break the data into column vectors

o Longitude is Column 1
o Latitude is Column 2

• Save the lat/lon variables as a MATLAB “.mat” file, for future use.
• Plot the coastline

o >> plot(longitude,latitude)
o Use the axis command to rescale the axes, as necessary.
o West longitude is a negative number.

How to Download the Coastline

• http://rimmer.ngdc.noaa.gov/coast/
• Choose the latitude and longitude range.
• Choose the coastline database (1:70,000 has higher resolution than 1:250,000).
• Choose the MATLAB format option.
• The GUI options are similar to (partial list):

Coastline data base:

NOAA/NOS Medium Resolution Coastline (designed for 1:70,000)

Compression method for extracted ASCII data:

None GNU GZIP UNIX Compressed ZIP

Coast Format options:

Mapgen Arc/Info Ungenerate Matlab Splus

Coast Preview options:

No preview GMT Plot

88

D. PRINTING AND SAVING A DIGITAL IMAGE

There are several printing options:

• Print directly to a printer from the command prompt.

• Make a postscript file (color or B&W) and save it on a disk to print later.

• Make a digital image to import into MS Word or PowerPoint.

1. Print from the command prompt.

>> print % prints to the attached printer

• As a general rule, don't put the print command in the M-file.

• Many times, when you issue the print command inside an M-file later you
want to make one more change and must reprint the figure.

• Save paper, print interactively at the command prompt.

• Use the figure(number) command to set the pointer to the desired
figure window.

• At the command prompt, type print

2. To save a MATLAB plot as a postscript file

Use the print command (at command prompt or in M-file), with options:

% prints as Black lines on White background

>> print -dps filename.ps % ".ps" indicates postscript

% prints as Color lines on white background

>> print -dpsc filename.psc % ".psc" indicates color postscript

3. Printing a postscript file

• The IDEA Lab printer is a B&W postscript printer.

• For most class projects and homework, B&W is fine.

• To print out the postscript file in the IDEA Lab, the UNIX command is:
lp filename.ps

• The Graphics Lab has a color postscript printer, but it is expensive to use.

89

• To print out the Color postscript file in the Graphics Lab, you MUST be
logged into a Graphics Lab workstation. The UNIX command is:

lp -dcolor filename.psc

• Note: If you print a color postscript file to a B&W printer, the output is

poor. The color postscript files print in shades of gray and not as black
lines. Therefore, a red line in the color plot prints as light gray, and is hard
to see.

4. To save a MATLAB plot as a graphics file:

If you need a plot to e-mail to someone, import into a word processor, or PowerPoint,
you need the figure in a graphics format.

• See on-line >>help print for the many graphics options.

• "gif" is not supported by MATLAB.

• Experience has shown the best images are produced by converting the
image to tiff. This produces an image wider that 8.5 inches.

>> print –dtiff filename.tif

• To make a tiff image sized to 6.0 inches (fits a MS Word page), use the

“-r75” option. A factor larger than 75 makes the image larger, smaller
factor reduces the size.

>> print –dtiff -r75 filename.tif

5. Convert image formats using “xv”.

To convert from one graphics format to another, use the UNIX software xv.

• Use the UNIX program xv. At a UNIX prompt, type xv

• Click the RIGHT mouse button to get the menu.

• Click on LOAD.

• Select the gif, tif, pcx, postscript, or other digital file from the list.

• Click on SAVE.

• Click on FORMAT and select the format to "save as".

• Choose any of the popular formats needed for other graphics programs.

90

• It is also possible to convert a graphics file into postscript. When you save
as a postscript file, be sure to size the image to fit on 8 1/2 x 11 paper.

• Another option is to use "xv" to view postscript files.

• Never use the xv menu to print anything (gif, tif, jpeg, postscript, etc).

• Use UNIX to print the postscript file.

• Printing from xv itself causes the printer to print the file as ASCII
instead of the digital format. Consequently hundreds of sheets of
paper are generated and wasted.

91

XIV. HOW TO USE “FTP”

A. OVERVIEW

File transfer protocol (ftp) is one method used to remotely login to another machine and
transfer files. Only computers that have been set up for remote login will allow ftp
access. Before trying to ftp to another machine, you must know/have the following:

• Network name or IP address of the remote machine.
• User account and password on the remote machine.
• Ftp software must be available on computer you are using.

B. PROCEDURES TO FTP TO THE IDEA/GRAPHICS LABS

1. Log into an NPS Network PC with your user name/password.
2. Start WS-FTP software on the Network PC (if not on your Desktop, look under

Programs).

• Select NEW (sets inputs to blank)
• Enter an IDEA Lab or Graphics Lab computer name:

Fastest way to access Meteorology Department Disks:

 mojave.met.nps.navy.mil or eagle.met.nps.navy.mil

or use any IDEA Lab UNIX workstation name (lower case) and
 .met.nps.navy.mil

Fastest way to access Oceanography Department Disks:

attu.oc.nps.navy.mil or tonga.oc.nps.navy.mil

or any Graphics Lab UNIX workstation name (lower case) and
.oc.nps.navy.mil

• Enter your IDEA Lab account name
• Enter OKAY
• DO NOT enter your password and store it on the computer
• Enter your password when prompted, then ENTER.
• Wait for the connection to be made.

92

• A GUI interface will appear.

i. Left side is the HOST computer (Network PC machine)

ii. Right side is the REMOTE UNIX computer pointing at your home
directory

iii. Use Chdir button to Change directory on both the Host and
Remote computers.

• On the Host computer, use your H: drive or floppy disk or

Zip100 disk. Don’t write to the Network machine’s C:
drive.

iv. Highlight the file you want to transfer.
v. Select ASCII or BINARY

• ASCII text files, “.m” files should be transferred in ASCII

mode
• Graphics files, “.mat”, MSWord, PowerPoint, Excel must

be transferred in BINARY mode

vi. Push the arrow button to transfer the file.
vii. Multiple files may be highlighted and transferred at once.

viii. File transfer is permitted in either direction.

• Ending a session is a two step process:

i. Use the Close button (left button on the bottom bar)

ii. Use the Exit button (right button on the bottom bar)

C. FTP TO AN NPS NETWORK PC

• The computer name and/or IP address for the Network PCs are not
apparent. Therefore, unless you have an address provided by an IT
consultant, you cannot ftp to an Network PC from the IDEA or Graphics
Labs.

D. FTP TO THE IDEA OR GRAPHICS LABS FROM OFF-CAMPUS

• Due to changes in the NPS firewall, students must consult the IT Helpdesk
for this information.

93

XV. CHARACTER STRINGS

A. RULES FOR CHARACTER STRINGS

1. Character strings are defined with single quotes (') around a string of
alphanumeric characters.

2. There are many uses for character strings, such as input to plotting functions:
title, xlabel, and ylabel.

3. One character string, with N alphanumeric characters, is stored as a row vector
with size: 1xN.

4. The character string may be assigned to a variable name, but it is not required.
Character string variable names follow the same MATLAB rules for variable
names.

5. The list generated by the whos command identifies which variables are character
strings.

6. Individual character strings can be concatenated together to form a new, longer
string.

7. Multiple character strings can be stored together in a matrix.

8. An apostrophe or single quote may be included in a character string by using two
single quotes together in the string.

>> 'Sally''s Plot for MR 2020'

ans =
Sally's Plot for MR 2020

9. An advanced use of character strings is to concatenate a character string to be a

MATLAB command, such as 'load sounding_data.mat', and to execute the string
as a command by using the eval function: eval('load sounding_data.mat').

B. CHARACTER STRINGS AS ROW VECTORS

1. One character string, with N characters, is stored as a row vector, size 1 x N.

>>s = 'This is a character string' % 26 chars, including blanks

2. To extract characters 6-14:

94

>>t = s(6:14)
t =

is a char

3. The transpose of a row vector, s', is defined, but a column vector of characters

isn't useful.

C. CONCATENATION

• Multiple character strings can be concatenated to form a new, longer
string. This is a very useful feature.

• Row vectors are concatenated using the same rules as for vectors of
numbers.

a = 'Today is:'
b = '10 January'

r = [a, b] % the comma is optional; r = [a b]

r =
Today is:10 January

s = [a, ' ', b] % a blank space is added between the
% two strings

s =
Today is: 10 January

s2 = [a ' ' b] % no commas between strings;
% same result.

s =
Today is: 10 January

• Portions of strings may be concatenated:

t = [a(1:5) b(1:5)]
t =

Today10Jan

D. CONVERT NUMBERS TO CHARACTER STRINGS

Two functions num2str and int2str are extremely useful. They convert real numbers and
integers into character strings. This is useful when concatenation character strings.

• num2str converts a real number into a character string.

x = 16.35 % real number

u = ['The value of x is: ' num2str(x)] % added to a string

95

u =
The value of x is: 16.35

• int2str takes a real number and rounds it to the nearest integer and the

integer is converted into a string.

x = 16.55 % real number

v = ['The integer value of x is: ' int2str(x)]

v =
The integer value of x is: 16

E. MATRICES OF CHARACTER STRINGS

• Multiple character strings may be stored in a matrix provided that all
strings have the same length.

• Shorter strings can be stored in a matrix only if blank spaces are
added to the end of the string (called padding the string) to make it
the same length as the other strings in the matrix.

• For example, if a matrix of names already contained 'David' and
'Kevin', the name 'Joe' could be added only after padding the string
with two blank characters: 'Joe '.

• The function char will take input strings of different lengths, pad spaces
where necessary, and make a matrix of same-length strings.

• Matrices of equal-length strings can be defined using square brackets and
a semicolon between names:

• Example 1: Defining a matrix of equal-length character strings.

>>names = ['Mike'; 'Mary'; 'Jeff'; 'Jose'; 'Gary']
names =

Mike
Mary
Jeff
Jose
Gary

 Note: the size of names is 5 x 4 -- 5 rows, 4 columns for each name.

96

• Example 2: Use the char function to create a matrix with equal-length
strings when the input strings are not the same length.

• Since the char is a function, a comma separates the input strings:

>>N = char('Joe', 'Sally', 'Margaret')
N =

Joe
Sally
Margaret

Note: matrix size is 3x8 -- the first two names have padded blank spaces.

F. INDIVIDUAL CHARACTER STRINGS IN A MATRIX

• To use individual character strings in a matrix, you must explicitly state
the rows and columns of the matrix element.

• A person would look at a matrix of character strings, for example the
matrix names, defined in Example 1 above, and think the matrix only has
5 elements.

• Our intuition is view the element names(1) to be ‘Mike’. This is
not the case.

• The matrix names is a 5x4 matrix. The element names(1) is only
one character: ‘M’.

• The string ‘Mike’ is stored in the first row and all columns of the matrix
names. The string ‘Mike’ is stored in names(1,:).

• To indicate the entire string in a matrix, use the colon to indicate all
columns of a row.

>>a = names(3,:)

a =
Jeff

• To indicate partial strings, use the colon and two numbers (e.g. 3:9) to
indicate which columns.

>>b = names(1,2:4)

b =
ike

97

• More than one string can be extracted from a matrix by using the colon
and two numbers to indicate which rows of the matrix.

>>c = names(3:5,:)

c =
Jeff
Jose
Gary

G. ADDING STRINGS TO EXISTING MATRICES

• There are some subtle aspects to adding strings to existing matrices. One
character string is stored in one row and multiple columns.

• To add the first string to a new matrix, Y, this command works:

Y = 'string number 1' % Correct

• Intuition suggests that the following command would work. It does not!

 Y(1) = 'string number 1’ % Wrong

• The columns of Y(1) must be identified using the colon. This is the
command that works:

Y(1,:) = 'string number 1' % Correct

• To add a second string to row number two, the columns of Y(2) must be

identified using the colon. This is the command that works:

Y(2,:) = 'string number 2' % Correct

• To summarize:

• Assigning one string to a variable can be accomplished with a
shorthand command: Z = ‘string1’.

• To assign the second and subsequent strings to the matrix requires
that the colon be used to signify “all columns”. This method
works only if all character strings are the same length.

• To assign strings of different length to the same matrix, use the
function char, which will pad the strings to become the same
length as the longest input string.

98

H. "for" LOOP TO CREATE A MATRIX OF CHARACTER STRINGS

• Using the loop variable i and the int2str or num2str function is a handy
way of building a matrix of character strings with numbers concatenated.

• Example 1: Consecutive number in the strings (same number of digits in
each number).

for I = 1:3

Y(I,:) = ['string number ' int2str(I)];
end

Y =
string number 1
string number 2
string number 3

• Example 2: Non-consecutive numbers in the strings (same number of

digits in each number).

Z = [14 77 99]; % same number of digits

% in each number

for I = 1:length(Z)
Y(I,:)=['string' int2str(Z(I))]; % number is Z(I)

end

Y =
string14
string77
string99

• Example 3: Non-consecutive numbers in the strings (different number of

digits in each number). Use char function to add blanks.

Z = [1 77 100]; % different number of digits

for I = 1:length(Z)

if I == 1
Y = ['string' int2str(Z(I))]; % store 1st string

else
Y = char(Y,['string' int2str(Z(I))]); % store as Y

end

end

Y =
string1
string77
string100

99

XVI. “eval” FUNCTION

A. OVERVIEW

• This function will execute (or evaluate) strings containing MATLAB
expressions. Usage:

eval('string')

• A programmer will recognize that the variable, Y, is a character string that
contains a command, Y=‘load mydata.mat’, but MATLAB interprets Y as a
character string, size 1x15.

• When the character string is the input to a function called eval, then
MATLAB will interpret the string as a valid command and execute the
command. The following commands produce the same result

>>Y = 'load mydata.mat'
>>eval(Y) % option 1
>>eval('load mydata.mat') % option 2

• Typically, a command is concatenated from multiple character strings and
may only be executed using the eval function.

• After evaluating an expression, there may be output data to be stored. The
eval function allows for output. The data loaded from the data file will be
stored in variable “data”.

>>data = eval('load OAK_snd_13Feb02.txt')

B. EXAMPLES

• Load a file. The output variable, “data”, will contain the sounding data in the
sounding file.

>>data = eval('load oak_sounding_20011231_12z.txt')

• Concatenate a “.mat” filename and save variables.

>>date = 'oct25';
>>time = '00Z';

>>filename = ['OAK_' date '_' time '.mat']; % make string

>>eval(['save ' filename 'T Pres RH']) % execute command

100

• Concatenate a filename in nested “for” loops. Use the eval command to
load the file.
date=['oct25';'oct26';'oct27';'oct28'];
time=['00Z'; '12Z'];

for i = 1:4
for j = 1:2

filename = ['OAK_' date(i,:) '_' time(j,:) '.mat'];
eval(['load ' filename])
% add other commands which use the loaded data

end
end

• Concatenate a variable name. Make a matrix with a new variable name
from a character string containing the name of a previously defined variable.

o Assume these variables exist in your MATLAB workspace:
>>whos

OAK_12z 57x8 double array
OAK_18z 89x8 double array

o Use a “for” loop to concatenate the name of an existing variable,
and store the string name in variable ‘name’.
for I = [12 18]

name = [‘OAK_’ num2str(I) ‘z’]
end

o The variable, ‘name’, is a 1x7 character string and does not contain
the data in the matrices OAK_12z, OAK_18z. Use the eval command
to convert ‘name’ into the matrix of data.
for I = [12 18]

name = [‘OAK_’ num2str(I) ‘z’];
data = eval(name); % matrix
hght = data(:,1);
relh = data(:,2);
figure
plot(relh,hght)
title([‘Oakland Sounding ’ num2str(I) ‘Z’])

end

101

XVII. SEARCHING DATA ARRAYS AND MATRICES

A. OVERVIEW

There are times a programmer must search a data array or matrix and identify and extract
a subset of the original data values.

• There is a “long” way to accomplish this task, using a “for” loop and “if”
statement.

• MATLAB has two “shortcut” methods to search a vector or matrix.

1. Using the “find” function.

2. Using relational and logical operators.

B. BASIC CONCEPTS AND DEFINITIONS

To understand the two MATLAB shortcuts, five definitions and basic concepts must be
explained:

1. Array Index

2. Matrix Index

3. “find” Command

4. Logical Arrays and Matrices

5. Relational and Logical Operators using Arrays and Matrices

C. ARRAY INDEX

Individual array elements are accessed by using the array index, or location. Multiple
elements (a subset) of one array may be accessed by using another array, which contains
indices (locations) of the first matrix.

• Given an array, M = [10 20 30 40 50 60 70 80 90 100]

• Define a subset of M, let subset S = {10, 40, 90}

• The indices of M that correspond to the subset, S, are {1, 4, 9}.

102

• A variable may be defined to contain array indices and is used to extract a
subset from the original matrix.

>> x = [1, 4, 9] % an array of indices of M
>> S = M(x) % S is a subset of M

S =
10 40 90

• Rules:

1. The data array can be a row or column vector.

2. The indices variable can be either a row or column vector and will work
with the data array, regardless of its orientation (in the above example, if x
is a column vector, it will still work with row vector, M).

3. The orientation of the subset, whether a row or column vector, is
determined by the orientation of the original array.

D. MATRIX INDEX

• Individual matrix elements are usually accessed by a row and column pair of
indices (eg. A(5,12)).

• The matrix elements may also be addressed by a single number index.

• Matrix locations are numbered columnwise.

• An array of numbers, referring to locations in a data matrix, may be used as
indices to extract a subset from the original matrix.

• Given an matrix, A
A =

100 200 300
400 500 600
700 800 900

Indices of A are numbered columnwise

1 4 7
2 5 8
3 6 9

• Define a subset of A, let subset S = {100, 300, 500, 700, 900}

• The indices of A that correspond to S are {1, 7, 5, 3, 9}, respectively.

103

• The subset of A will be either a row or column vector. The orientation of
the subset array is determined by the orientation of the subset indices
array.

>> y = [1, 7, 5, 3, 9] % an array of indices of A
>> B = A(y) % B is a subset of A
B =

100 300 500 700 900

>> y2 = [1; 7; 5; 3; 9] % a column vector of indices
>> B2 = A(y2)

B2 =
100
300
500
700
900

• The order in which the elements of A are listed in the subset vector is
determined by the order in which the indices are listed in the indices array.

>> y3 = [9 1 7 5 3] % indices in nonsequential order
>> B3 = A(y3)

B3 =
900 100 300 500 700

E. “find” FUNCTION

The find function searches an input array or matrix, for input search criteria, and returns
the indices of array or matrix elements that meet the criteria. The indices are
automatically listed in ascending order.

• Example with a data array. The orientation of the subset will match the
orientation of the data row or column vector.

>> T = [10 15 18 22 13] % array of temperatures
>> c = find(T >= 18) % output are indices of T

c =
3 4

>> T_gt_18 = T(c) % subset T >= 18

T_gt_18 =
18 22

104

• Example with a data matrix. The orientation of the subset will be a column
vector.

>> Temp = [10 15 18; 22 13 6; 0 17 5] % matrix
Temp =

10 15 18
22 13 6
0 17 5

>> d = find(Temp >= 12) % output are indices of Temp
d =

2
4
5
6
7

>> Temp_gt_12 = Temp(d) % Subset Temp >= 12

Temp_gt_12 =
22
15
13
17
18

• The default use of the find function is to find nonzero values in an
array/matrix.

>> A = [-2 0 2 0 4]
>> B = find(A) % finds nonzero values of A

B =
1
3
5

F. LOGICAL ARRAYS AND MATRICES

• Logical arrays and matrices are arrays/matrices of 1’s and 0’s that can be used
for logical indexing or logical tests.

• Logical arrays are also created by the relational operators (==,<,>,~, etc.) and
MATLAB built-in functions any, all, isnan, isinf, and isfinite.

105

• There is a difference between an array/matrix of the numbers 1 and 0 and an
array/matrix that is defined to be a logical variable.

o The whos command will indicate if a variable contains real
numbers or is a logical variable.

o The built-in function logical converts an array/matrix of 1’s and
0’s from real numbers to a logical variable.

• If an array/matrix is a logical variable, then it can be used to extract a subset
of another array/matrix.

• If the logical value is 1 (true), the element is extracted, otherwise the element
is omitted from the subset. The logical array must have the same number of
element as the data array.

• Example of logical array. Orientation of the output matches the data array.

>> T = [10 15 18 22 13] % array of temperatures

>> f = [1 0 0 1 0] % array of numbers (not logical)

>> g = logical(f) % convert to a logical variable

>> T_subset = T(g) % subset of T

T_subset =
10 22

>> whos
T 1x5 double array
T_subset 1x2 double array
f 1x5 double array
g 1x5 double array (logical)

• Example of logical matrix. Output is a column vector.

>> Temp = [10 15 18; 22 13 6; 0 17 5] % matrix

>> h = [0 1 0;1 1 0; 0 0 1] % numbers not logical

>> k = logical(h) % convert to logical

>> Temp_subset = Temp(k) % subset of temp

Temp_subset =
22
15
13
5

106

G. RELATIONAL AND LOGICAL OPERATORS USING ARRAYS AND
MATRICES

The rules of using relational and logical operators on scalar variables apply to arrays and
matrices. The output of applying an expression using relational and logical operators to
an array or matrix is a logical variable.

• Example 1: Search one array. Output has the same size and orientation as
the data array.

>> T = [10 15 18 22 13] % array of temperatures
>> Td = [9 11 8 16 3] % array of dew point

>> m = T > 20 % output, m, is same size as T
% m is a logical variable

m =
0 0 0 1 0

>> T_subset = T(m) % subset of T

T_subset =

22

>> n = Td < 10 % output, n, is same size as Td
% n is a logical variable

n =
1 0 1 0 1

>> Td_subset = Td(n) % subset of Td

Td_subset =
9 8 3

• Example 2: Compare two arrays. Use logical operators: AND, OR, NOT.

>> p = (T > 20 | Td < 10) % Compound expression using OR

p =
1 0 1 1 1

>> q = m | n % same as (T > 20 | Td < 10)

q =
1 0 1 1 1

107

• Example 3: Search matrices. Output of the logical expression is a matrix
with the same size as the data matrix. The subset of the data matrix is a
column vector.

>> r = (A <= 200 | A > 750) % compound expression

r =

1 1 0
0 0 0
0 1 1

>> subset_A = A(r) % subset of A

subset_A =

100
200
800
900

H. SEARCHING DATA ARRAYS

• The three methods for searching a vector or matrix provide identical results.

 1. Using a “for” loop and “if” statement to search a vector.

 2. Using a “find” command to search a vector or matrix.

 3. Using relational and logical operators to search a vector or matrix.

• There is a special case – searching for NaN – that can only be accomplished
with Method 3, using relational and logical operators.

Method 1: Using a “for” loop and “if” statement to search a vector.

• This method works on a row or column vector.

• The search criteria may be a compound expression.

• Searching a matrix is much easier to accomplish using the “find” command,
so an example using “for’ and “if” construction is not provided.

108

• Example 1: Identify the locations in vector T where T(i) < 0.

T = -25:5:100 % Define Temperature Array, T
count = 0 % Initialize a counter

for I = 1:length(T) % search each element of T
if T(I) < 0 % search criteria
count = count + 1; % increment counter
A(count) = I; % I is the index of T

% which meets the criteria
end

end

subset_T = T(A) % subset of T

• Example 2: Identify the locations in vector T where T(i) < 0 by creating a

logical variable.

for I = 1:length(T)
if T(I) < 0

G(I) = 1; % G is NOT a logical variable
else

G(I) = 0; % G is NOT a logical variable
end

end

new_G = logical(G) % Make new_G a logical variable

subset_T = T(new_G) % subset of T

Method 2: Using a “find” command to search a vector or matrix.

• Example 1: Identify the locations in vector T where T(i) < 0.

T = -25:5:100 % Define Temperature Array, T

A = find(T<0) % A is the vector of indices
% that meet the search criteria

subset_T = T(A) % subset of T

• Example 2: Identify the locations in matrix T where T(i) < 0.

T = [-25:5:25; 30:5:80]; % Define Temperature Matrix, T

A = find(T<0) % A is the vector of indices
% that meet the search criteria

subset_T = T(A) % subset of T

109

• Example 3: The search can be accomplished in one step. The output of the
find command is the input vector for the data array/matrix.

T = [-25:5:25; 30:5:80]; % Define Temperature Matrix, T

subset_T = T(find(T<0)) % the vector that find command output
% is the input for the data matrix, T

• Example 4: The search is using a compound expression.

T = [-25:5:25; 30:5:80]; % Define Temperature Matrix, T

A = find(-15 <= T & T > 35) % compound expression

subset_T = T(A) % subset of T

Method 3: Using relational and logical operators to search a vector or matrix.

This method is the same for searching vectors or matrices.

• Example 1: Searching a vector.

T = -25:5:100 % Define Temperature Array, T

L = T < 0 % L is a logical variable
% The size and orientation of L
% matches the size & orientation of T

subset_T = T(L) % subset of T; the orientation of the
% output matches the orientation of T

• Example 2: Searching a matrix.

T = [-25:5:25; 30:5:80]; % Define Temperature Matrix, T

L = T < 0 % L is a logical variable
% The size of matrix L is the size of T

subset_T = T(L) % subset of T
% output is a column vector

110

Special Case: Searching for NaN in a vector or matrix.

• Using the “find” command for NaN does not work.

o find(T == NaN) does not work

• There is a built-in function, isnan, to find the NaN’s in a vector or matrix.

o The output of isnan is a logical variable.

• Typically, a programmer finds the NaNs in the dataset for the purpose of
making a subset with the NaNs excluded.

o The complement operator (~) reverses ones and zeros (1 changed
to 0, etc.).

o The subset with NaN excluded uses the complement of the logical
variable generated by isnan.

• Example 1: Searching a vector for NaN. The same procedure works for a

matrix.

T = [0 –5 –10 NaN –6 2] % Define Temperature Array, T

A = isnan(T) % Finds only the NaN

subset_T = T(~A) % subset excludes NaN

subset_T =
0 -5 -10 -6 2

• Example 2: Searching a vector to exclude NaN. The same procedure works

for a matrix.

T = [0 –5 –10 NaN –6 2] % Define Temperature Array, T

A = ~isnan(T) % Complement of isnan finds
% values not equal to NaN

subset_T = T(A) % subset excludes NaN

• Example 3: Searching a vector to exclude NaN in one step.

T = [0 –5 –10 NaN –6 2] % Define Temperature Array, T

subset_T = T(~isnan(T)) % subset excludes NaN

111

XVIII. DATA WITH MISSING/BAD VALUES AND “NaN”

A. MISSING/BAD DATA AND QUALITY CONTROL

Introduction

Meteorological and oceanographic measured data can have errors in it. There are two
types of error:

• Missing values -- sensor is inoperable, a missing data value of -9999 or +999,

etc, is inserted in the data set.

• Data value is wrong -- unrealistic values. These are harder to identify. At
FNMOC and other data centers, "quality control" routines are used to identify
bad data and then fix or eliminate the erroneous values. For data used in
course work and theses, you can write MATLAB code to do some primitive
quality control checking.

Missing Values

Finding and replacing missing values with the MATLAB missing value, NaN (called
Not-a-Number), is a multi-step process.

1. Use the find function to search the data array or matrix to identify the location

in the array/matrix of the -9999, 999, or other "bad" values. The output of the
find function is an array of indices which indicate the location within the
array/matrix of the "bad" values.

2. Make an array the length of the indices array which have NaN as each

element.

3. Using the NaN array, substitute one NaN into each location of "bad" data.

Generally, you give this array/matrix of good data and NaNs a new variable
name (you never discard the original data).

4. When you plot the arrays with good data and NaNs, the NaNs are not plotted.

5. If you need a plot where the data points are connected by a continuous line,

the omitted NaNs cause breaks in the plotted line. There are specific
instructions for fixing this plotting problem.

112

Quality Control

• Prior to computing an equation, use an IF statement to check for the data value to be
within certain bounds. For example, check relative humidity values to be within 0-
100 percent:

% RH = an array of Relative Humidity values (units of percent)

for k = 1:length(RH)
if RH(k) >= 0 & RH(k) <= 100

Q(k) = some equation; % compute using good RH value
else

Q(k) = NaN; % put NaN in array
end

end

• Generally, you need to put NaN into an array to hold the place of a bad value.

• If you have several data vectors that must be the same length, you must use
NaN or the vector will not have the same length as its related data.

• For example, assume you have RH and Height and other vectors of the same

length. If the RH has 5 bad values and you didn't use NaN in the new Q array,
then the Q vector will be shorter than the RH and Height, so you couldn't plot
Q and Height together.

113

B. METHOD TO REPLACE MISSING/BAD DATA VALUES

The values of the matrix, data, are listed below. The matrix contains the value -9999.0 to
indicate missing/bad values. The data type of each column of the matrix is indicated.

Pressure Height Temperature Dew Point RH Mix Ratio Wind Dir

data =
1.0e+03 *
1.0100 0.1540 0.0188 0.0149 0.0781 0.0137 0.2600
1.0050 0.1250 0.0174 0.0127 0.0739 0.0126 0.2720
1.0000 0.0950 0.0168 0.0130 0.0783 0.0122 -9.9990
0.9756 0.3050 -9.9990 -9.9990 -9.9990 0.0107 0.2750
0.9730 0.3280 0.0142 0.0131 0.0931 0.0106 0.2780
0.9680 0.3710 0.0138 0.0127 0.0931 -9.9990 0.2830
0.9670 0.3800 0.0138 0.0117 0.0871 0.0103 0.2840
0.9630 0.4150 0.0174 0.0014 0.0340 0.0132 0.2880
0.9610 0.4330 -9.9990 0.0010 0.0281 0.0156 0.2900
0.9570 0.4690 0.0206 -0.0074 0.0145 0.0162 0.2940
0.9500 0.5320 0.0240 -0.0180 0.0050 0.0203 0.3010
0.9420 0.6060 0.0246 -9.9990 0.0097 0.0212 -9.9990
0.9416 0.6100 0.0245 -0.0083 0.0107 0.0211 0.3100
0.9380 0.6430 0.0240 0.0010 0.0220 -9.9990 0.3080
0.9300 0.7180 0.0238 -0.0042 0.0152 0.0204 -9.9990
0.9250 0.7650 0.0238 0.0018 0.0236 0.0206 0.3000
0.9092 0.9140 0.0230 0.0038 0.0285 0.0199 0.3050
0.8778 1.2190 0.0212 0.0080 -9.9990 0.0184 0.2750
0.8560 1.4370 0.0200 0.0110 0.0561 0.0175 0.2590
0.8500 1.4980 -9.9990 0.0096 0.0524 0.0172 0.2550

Procedure to Replace Bad/Missing Data (-9999.0) with NaN

• Replace all –9999 with NaN before breaking the matrix into column vectors.

o Use the find function to find the indices where –9999 values exist. Store
these indices in a variable (index_bad_values).

index_bad_values = find(data == -9999);

o Use the size function to find the size of the variable, index_bad_values.
The output of the size function are the number of rows and columns.

[row,col]=size(index_bad_values);

114

o Replace the bad values of the data matrix with NaN. The index_bad_values
variable is used to indicate which locations in the data matrix must be
replaced. NaN*ones(row,col) makes a vector of NaN which has the exact
number of NaN needed. The function ones is used to create the vector and
NaN multiplies each element.

data(index_bad_values) = NaN*ones(row,col);

o Example code:

index_bad_values = find(data == -9999);
[row,col]=size(index_bad_values);
data(index_bad_values) = NaN*ones(row,col);

• If the matrix is broken into column vectors before –9999 are replaced, then each

column vector must be searched and bad values replaced. Replace all –9999 with
NaN before breaking the matrix into column vectors. The location of bad values
in each column vector may be different.

o Example code: pres and tmpc are column vectors.

index_bad_p = find(pres == -9999);
[row,col]=size(index_bad_p);
pres(index_bad_p) = NaN*ones(row,col);

index_bad_t = find(tmpc == -9999);
[row,col]=size(index_bad_t);
tmpc(index_bad_t) = NaN*ones(row,col);

115

C. EXCLUDING “NANS” IN PLOTS

Introduction

• Plotting vectors that include NaN may cause breaks in the plot. To fix this, you
must create new vectors that only have good values (no NaN).

• For example, if we are plotting column vectors of temperature (T) and Dew Point
(TD) versus height (H).

• There is a one-to-one correspondence between the values in each T and TD vector
and height.

• Since you can only plot vectors of equal length, you must also exclude the

corresponding height values for each bad T and TD value.

• We must use the isnan function to locate NaNs in each vector. The find function
does not work with NaNs. The output of the isnan function is a logical vector, of
the same size as the data vector, where 1 indicates NaN and 0 indicates other than
NaN.

Steps:

1. Locate the NaNs in the temperature vector: T_nan = isnan(T).

2. Make a new temperature vector which do not include NaN. Use the
complement (reverse 1 and 0) of the T_nan vector: new_T = T(~T_nan)

3. Make a new height vector that excludes the corresponding elements as the

temperature vector. The new height vector is the same length as the new
temperature vector: new_H1 = H(~T_nan)

4. Do the same procedure for the dew point vector. Since there are a different

number of NaNs in this vector than temperature, we need a different new
height vector to correspond to the new dew point vector. Here are the
commands:

Td_nan = isnan(TD)
new_TD = TD(~Td_nan)
new_H2 = H(~Td_nan)

5. Plot the new temperature and dew point vectors versus their corresponding

height vectors.

plot(new_T, new_H1,’b*, new_TD , new_H2,’r-d’)

116

Figure 11. Example of plotted vectors with and without “NaNs”. The left
plot has breaks in the lines where “NaNs” occur in the data vectors. The
right plot has the “NaNs” removed from each vector and a straight line is
plotted between existing data points.

117

XIX. PROGRAM DESIGN EXAMPLE

Problem: Plot rawinsonde data.

Student questions:

1. Where is the rawinsonde data file?
2. What form is the rawinsonde data in?
3. Should the program be designed to plot more than one rawinsonde?
4. What data variables do you want plotted?
5. What are the requirements for layout of the plot(s)?
6. Need a hardcopy or digital copy of the plot(s)?
7. Should the MATLAB workspace be saved for future use?

Steps of the Program (pseudocode):

1. Ingest the rawinsonde data -- take from UNIX and put into the MATLAB

workspace.
2. In MATLAB, make column vectors of the rawinsonde measurements.
3. Compute additional variables from the rawinsonde data.
4. Save the workspace as a .mat file.
5. Make the plot(s).
6. Print the plot(s) or save the digital copy of the plot(s).

Each Step is Designed in Greater Detail (pseudocode):

1. Data Ingest:

• If rawinsonde data is already in a MATLAB ".mat" file, then load it with the
"load" command.

• If rawinsonde data is in an ASCII text file with (1) data in columns (2)
contains only numbers, no letters or slashes, etc, and (3) no text header lines,
then load the file into MATLAB with the "load" command.

• If rawinsonde data is in an ASCII text file with (1) data in columns (2)
contains only numbers, no letters or slashes, etc, and (3) contains text header
lines, then edit the ASCII file and put % signs in Column 1 of each text header
line (making the header lines appear as comments to MATLAB). Save the
new data file and load the new file into MATLAB with the "load" command.

• If the rawinsonde data cannot be easily changed into a format suitable for the
"load" command, then a lengthy data "decoder" program (M-file) must be
written.

118

2. Once the data is loaded into MATLAB, break the matrix into column vectors
using the "colon method".

3. Write code to compute additional meteorological variables using the column
vectors already in the MATLAB workspace. If necessary, create character string
variables which contain the rawinsonde location and date/time of the sounding
(will be needed for the plot).

4. Decide on a file name and save the workspace using the "save" command.

5. Design the plot(s).

• One plot per page?

• Multiple plots? Use subplot command. Design each plot on the page. What
is plotted on the X-axis, what is the Y-axis variable?

• What X-axis, Y-axis label names are needed? What plot title is needed?

• Is a legend needed?

6. Print or save the plot digitally? Print in color? Which digital format to save the

plot?

Write and Test Each Task:

1. Take the pseudocode describing each task and write the MATLAB code.
2. Test each section of code independently.
3. Combine all tasks into the final program.

119

XX. DEBUGGING SUGGESTIONS

1. Clear your workspace and re-execute your M-file. See if the problem is reproduced.
While debugging, a programmer may change variables in the MATLAB workspace
that causes problems for other lines of M-file.

2. Do not tear apart your original M-file. Copy the original program and make changes

to a test M-file. Too often, students destroy their original code when the error is
minor, but undetected for several minutes.

3. Take a break. Come back refreshed and relaxed.

4. Make a plan for testing your code. Write down the results of each test. This makes

your testing logical and thorough.

5. Test small portions of the code in your M-file.

6. Print out the most recent version of your M-file. Make sure your loops and if blocks
start and end properly.

7. Once you've isolated the section of the code that seems to be the problem, double-

check your logic.

• Do you understand the logic of the homework or lab assignment? Be sure you
understand the logic in math/physics terms before programming.

• Is each line of your code performing the designed math/physics requirement?

8. Clear your workspace and rerun the corrected portions of your test M-file. Save your

workspace as a ".mat" file (so someone else can later review your test results).

9. Have someone else look at your code. Explain your logic and how you've tested it.

120

XXI. FORMATTED OUTPUT

A. INTRODUCTION

• Programmers write to the screen with the disp and sprintf functions.

o The disp function (course notes on p. 38).

o The sprintf function is more versatile, but is more difficult to use.

• Programmers write to an open ASCII text file with the fprintf function.

o To open an ASCII file, use the fopen function (notes, p. 131).

o To close an ASCII file, use the fclose function (notes, p. 132).

o On-line help provides additional details of fopen and fclose.

• The sprintf and fprintf functions require a format string to specify the precise
number of digits and spacing to display numbers.

B. “sprintf” FUNCTION

• The sprintf function requires a format string to specify the precise format to
print the value of each variable.

o Syntax: sprintf(format,A)

o The variable, A, is printed using the format prescribed in the
format string.

o The format is a character string, enclosed by single quotes.
Format strings are described in the next section.

o The output of the function sprintf is a character string, which can
be assigned to a variable. A semicolon (;) will suppress the output
(not write to the screen).

o If an output variable is not assigned, MATLAB assigns variable
“ans” and the string is written as “ans =”

• Example 1: Printing scalar variables.

Using variables pres and temp, print pressure using 7 characters and
temperature with 6 characters:

sprintf('Pressure = %7.2f Temperature = %6.2f',pres,temp)

ans =
Pressure = 519.65 Temperature = -10.37

121

• Example 2: Assign the output string to a variable.

Assign the output string to a variable, use a semicolon to suppress the screen
print, and use disp to print to the screen. This method avoids extra lines with
“ans= ”

S = sprintf('Pressure = %7.2f Temperature = %6.2f',pres,temp);
disp(S)

Pressure = 519.65 Temperature = -10.37

• Example 3: Writing arrays with a "for" loop.

Arrays must have equal length. A header for the output table is written to
variable string S1.

S1=sprintf('Pres Temp'); % create a header
disp(S1) % print the header

for i=1:length(pres)
S2=sprintf('%7.2f %6.2f', pres(i),tmpc(i));
disp(S2)

end

Pres Temp
1011.90 19.20
1000.40 16.20
997.50 15.90
900.30 13.30
601.10 -0.10
572.80 -1.30
400.20 -12.30

• Example 4: Writing matrices without a "for" loop.

sprintf can print vectorized (without a for loop) to write a matrix. The format
string is cycled through the elements of A, columnwise, until all the elements
are used.

o If matrix A has 10 rows and 2 columns, the 10 elements in column
1 are printed before the elements in column 2 are printed.

o To make a table with 2 columns, you need to create matrix A with
2 rows. Each column of A will have only 2 values. When sprintf
prints each column of A it is written as one row of a table.

122

o Using Row Vectors pres and temp, create A with 2 rows:

 row 1 = pres, and row 2 = temp.

P = pres'; % Make column vector a row vector
T = temp'; % Make column vector a row vector
A = [P; T]; % Matrix A has 2 rows

S=sprintf('%7.2f %6.2f\n', A);
disp(S)

1011.90 19.20
1000.40 16.20
997.50 15.90
900.30 13.30
601.10 -0.10
572.80 -1.30
400.20 -12.30

• Example 5: Printing character string variables.

Use the format %s to print character string variables.

filename='oakland_snd.data'; % character string variable
datetime='31/1200 UTC Oct 96'; % character string variable

S = sprintf('Decoding file: %s, for %s',filename,datetime);
disp(S)

Decoding file: oakland_snd.data, for 31/1200 UTC Oct 96

123

C. FORMAT STRINGS

• The functions sprintf, fprintf, and fscanf each need a format string.
sprintf(format,A)
fprintf(fid,format,A)
fscanf(fid,format,A)

• format is a string containing ordinary characters and/or conversion
specifications. Ordinary characters include the normal alphanumeric
characters, and escape characters.

• Escape characters include:
\n new line
\t horizontal tab
\b backspace
\r carriage return
\f form feed
\ backslash

• Conversion specifications involve the character %, optional width field, and
conversion characters. Legal conversion characters are:

%e exponential notation
%f fixed point notation
%g %e or %f, whichever is shorter;

(insignificant zeros do not print)
%s character strings

• Between the % and the conversion character (e, f, or g), you can add one or
more of the following characters:

o Digit string to specify a field width, which includes the decimal
point and +/- sign.

o Period (.) to separate the field width from the next digit string.

o Digit string specifying the precision (i.e., the number of digits to
the right of the decimal point). Decimals are rounded to print out
the correct number of digits.

o Minus sign (-) to specify left adjustment of the converted argument
in its field.

124

• In the format statement, you must specify a sufficient number of characters to
allow the largest number in the data set to be printed.

 %7.2f indicates a floating-point number with:

o 7 spaces allocated to the number (including the decimal point, +/-
sign).

o 2 digits to the right of the decimal point.

o The negative number -234.67 fits the %7.2f format, but -2345.78
needs 8 characters to print and only 7 are allocated.

o The positive number 1234.67 fits the %7.2f format, but 12345.78
needs 8 characters to print and only 7 are allocated.

o The number 12.01 fits the %7.2f format, and two blank spaces are
padded to the left of the number. If the format was %-7.2f, then
the number prints in the first allocated character location and tow
blank spaces are added at the end (right) of the number.

• Spaces included in the format string will be included in the written output. To
add 3 spaces between output variables, add 3 spaces in the format string. The
tab option, /t, is a convenient way to space columns of output.

• To print a number as an integer, specify zero digits after the decimal point in a
fixed point notation (%5.0f).

• Example 1: Printing in decimal “f” format. Using variables pres, temp,
print pressure using 7 characters and temperature with 6 characters:

sprintf('Pressure = %7.2f Temperature = %6.2f',pres,temp)

ans =
Pressure = 519.65 Temperature = -10.37

• Example 2: Printing in exponential "e" format.
o The "e" format has eight digits of "overhead". To print a number

with 4 digits after the decimal point, the format field width must be
12 (4 decimal digits + 8 overhead digits).

o The overhead includes +/- sign at the beginning of the number, the
first digit, the decimal point, and room for the exponent (e+123 or
e-123).

sprintf('Temperature =%12.4e',temp)

ans =
Temperature =-6.5250e+001

125

• Example 3: Print as an integer. Specify zero digits after the decimal point
in a fixed point notation (%5.0f). A real number will be rounded to print as
an integer.

sprintf('%7.2f %6.2f %4.0f', pres,tmpc,relh)

ans =
17.70 -57.70 36

• Example 4: Print multiple variables. To print multiple variables with the
same format width and precision, you must explicitly type each format option.
There is no shortcut, as in other languages. This example uses the tab option.

sprintf('%12.4e\t %12.4e\t %12.4e\t %12.4e',T1, T2, T3, T4)

ans =
-1.6500e+001 -4.0010e+001 2.4750e+001 2.5006e+001

• Example 5: Reusing the format string. When printing with a "for loop",
the format string is reused many times. Arrays must have equal length. A
header for the output table is written to variable string S1.

S1=sprintf('Pres Temp'); % create a header
disp(S1) % print the header

for i=1:length(pres)
S2=sprintf('%7.2f %6.2f', pres(i),tmpc(i));
disp(S2)

end

Pres Temp
1011.90 19.20
1000.40 16.20
997.50 15.90
900.30 13.30
601.10 -0.10
572.80 -1.30
400.20 -12.30

126

• Example 6: Printing character string variables. Use the format %s for
character string variables.

filename='oakland_snd.data'; % character string variable
datetime='31/1200 UTC Oct 96'; % character string variable

S = sprintf('Decoding file: %s, for %s',filename,datetime);
disp(S)

Decoding file: oakland_snd.data, for 31/1200 UTC Oct 96

• Example 7: Start a new line of output. Use the \n option:

S = sprintf('Decoding file: %s \n for %s',filename,datetime);
disp(S)

Decoding file: oakland_snd.data
for 31/1200 UTC Oct 96

• For more information about format strings, refer to the printf and fprintf
routines in a reference manual for the C language.

127

D. “fprintf” FUNCTION

• Write to an open file with fprintf.
fprintf(fid,format,A)

• The only difference between fprintf and sprintf is the file identifier, fid, is
used.

o The file identifier, fid, is a number, specified by MATLAB as
output of the fopen function, which associates the file name and
pointer for the file.

o On-line help provides details of fopen and fclose.

• Example 1: Writing with a "for" loop.
Using arrays pres and temp, write one header line and all data values.

outfile = 'sample.out'; % define file name
fid = fopen(outfile,'w'); % open the ASCII file

fprintf(fid,'Pres Temp \n'); % print header line

for i=1:length(pres) % loop to print data
fprintf(fid,'%7.2f %6.2f \n', pres(i),tmpc(i));

end

fclose(fid); % close ASCII file

• Example 2: Writing without a "for" loop.

o fprintf can write vectorized (without a for loop).

o The format string is recycled through the elements of matrix A
(columnwise) until all the elements are used.

o If matrix A has 10 rows and 2 columns, the 10 elements in column
1 are printed before the elements in column 2 are printed.

o To make a table with 2 columns, you need to create matrix A with
2 rows. Each column of A will have only 2 values.

128

Using Row Vectors pres and temp, create A with 2 rows:
row 1 = pres and row 2 = temp.

P = pres'; % Make column vector a row vector
T = temp'; % Make column vector a row vector
A = [P; T]; % A has 2 rows

outfile = 'sample.out'; % define file name
fid = fopen(outfile,'w'); % open ASCII file

fprintf(fid,'%7.2f %6.2f \n', A); %print all values
% in matrix A

fclose(fid); % close ASCII file

• Example 3: Writing character strings to a file.

filename='oakland_snd.data';
datetime='31/1200 UTC Oct 96';
fprintf(fid,'Decoding file: %s, for %s',filename,datetime);

129

XXII. READING ASCII TEXT DATA FILES

A. INTRODUCTION

Many types of meteorological and oceanographic real-time observations, such as
rawinsondes, expendable bathythermograph (XBT) and sensors on ships and buoys, store
the observations in an ASCII text file.

• Each observation has an associated date and time, location (latitude and
longitude) and elevation above the earth’s surface or depth below the ocean
surface.

There are many formats for the ASCII files, but typically data will be listed in columns.
For simple formats, the “load” function may be used. Other formats require a more
sophisticated program to decode the data file.

• Use the “load” function for:

o Data in columns, without (1) text header lines, and (2) numbers
(-99, 99, etc.) to indicate missing values.

o Data in columns, with the percent sign (%) before each text header
line, and numbers (-99, 99, etc.) to indicate missing values.

o If the text characters, such as ///// for missing values, can be
replaced by 99999 or -9999, use a text editor to make the changes.
Then use the “load” function.

• A more sophisticated program is needed to decode file formats where:

o Information in the text header lines, such as station identifier,
latitude, longitude, elevation, date and time, must be decoded.

o Text characters, such as ///// to indicate missing values or letters to
indicate quality control flags, occur in the columns of data.

• When a sophisticated decoder program is needed, the data file must be opened
and read using functions described in this chapter.

• Once a data file is open, each line of alpha-numeric text is read with the
“fgetl” function and lines of numbers in columns are read with the “fscanf”
function.

130

B. OPEN FILE WITH “fopen” FUNCTION

The “fopen” function opens the designated file and automatically assigns a number,
called a file identifier, which is the pointer MATLAB uses to refer to the file instead of
using the actual file name.

fid = fopen(’sample_data.txt’,’r’)

• The file identifier number is an output of the fopen function and a variable
name is specified when the function is called. A typical variable name for the
file identifier is “fid”.

• The file name is specified in single quotes.

• The file permission is the second function input, and is also specified in single
quotes. The most common permissions are listed below. See on-line help for
the complete list of permissions.

'r' read
'w' write (create if necessary)
'a' append (create if necessary)

append is permission to write at the
END of the existing file

• The options listed above do not allow reading and writing to the same file at
the same time.

• Typically, a user will read from a data file and write or append to a separate
output file.

• If the file name is specified in a variable, then the variable is used in the fopen
function.

• If two files are open at one time, such as one input and one output file, use
different variable names for the two file identifiers.

inputfile = ’input_data.txt’
outputfile = ’output.txt’

fid_in = fopen(inputfile,’r’)
fid_out = fopen(outputfile,’w’)

• If there is a problem opening a file, the number –1 is assigned to the file
identifier.

131

C. CLOSE FILE WITH “fclose” FUNCTION

The “fclose” function closes the file designated by the file identifier variable. There is
an integer generated as output of the function -- zero, 0, indicates the file closed correctly,
-1 indicates a problem closing the file.

fclose(fid)

• Each file that is open must be closed by a separate call to the fclose function.

fclose(fid_in)
fclose(fid_out)

• Close all files prior to ending the program.

D. READ LINE OF TEXT WITH “fgetl” FUNCTION

The “fgetl” function reads one line of text from an open file and reads ASCII text only.
The last character of the function name is a lowercase L.

• The input to the function is the file identifier variable for the data file to be
read.

• The function needs an output variable to be designated, and the output
variable, a character string, will contain the ASCII text line.

 line = fgetl(fid);

• Text lines must be read sequentially in an ASCII data file. To read the fourth
line, the first three lines must be read.

 line1 = fgetl(fid); % read 1st line
 line2 = fgetl(fid); % read 2nd line
 line3 = fgetl(fid); % read 3rd line
 line4 = fgetl(fid); % read 4th line

• The output variable is a character string and substring elements may be
extracted using the rules for character strings on p. 94. Examples are listed on
p. .

• The output variable name can be the same (instead of line1, line2) is the data
is extracted from the variable character string before the next line of data is
read.

132

E. READ DATA COLUMNS WITH “fscanf” FUNCTION

The “fscanf” function is used for reading columns of data (all numbers) from an input
data file. There can be no text characters in the rows and columns of data to be read with
“fscanf”.

• If the data file contains text header lines, read each header line with the
“fgetl” function. When the next data line to be read starts the rows and
columns of numerical data, issue the “fscanf” command.

• Function input:

o File identifier variable for an open data file.

o Format string, as explained on p. 124, and in the following
examples.

o Size of the output matrix, based on the number of rows and
columns of data.

� Instead of counting the number of input data rows, the
number infinity, “inf”, may be used, and MATLAB will
read until the end of the data file is found.

• Function output:

o Variable for the matrix of data, containing each row of the data file
stored as a column of the output matrix (row 1 of input file is
stored in column 1 of output matrix).

o The output matrix must be transposed to re-orient the matrix data
to look like the input data file (column 1 of input file in column 1
of output matrix).

• Read data with a function call similar to:
A = fscanf(fid,’format’,[m,n])

• [m,n] defines the size of the output matrix, A: m rows and n columns.

• The size of output matrix is determined from the input data file.

o The input data file, which has m columns and n rows.

o If the input file has 6 columns and 500 rows, m = 6, n = 500.

o If you are not sure how many rows of data are in the input file,
define n to be infinite, i.e. [m,inf].

o The number of rows, n, can be infinite, but not the number of
columns, m.

o The output matrix must be transposed, so the matrix has m
columns and n rows to match the input data file.

133

• The format statement does not need to specify the width and number of digits
after the decimal point, but it must specify the type of number being read in
each column of the input data file.

o For five columns of decimal data, use the format string:
’%f %f %f %f %f’

• Legal conversion characters are:
%e exponential notation
%f fixed point notation
%g %e or %f, whichever is shorter;

(insignificant zeros do not print)

Example 1: File with No Text Header Lines

• Assume the input file has 6 columns and 500 rows. Data is in either floating
point (decimal) or exponential format, so we can use the g format, which
accepts either f or e format.

infile = 'sample.data'
fid = fopen(infile,'r');

A = fscanf(fid,'%g %g %g %g %g %g \n',[6,500]);
A = A'; % Transpose A

fclose(fid);

• Note: to make this code more general (not limited to files <= 500 lines), use
the n = infinite option.

A = fscanf(fid,'%g %g %g %g %g %g \n',[6,inf]);

Example 2: File with Header Lines

Assume the input file has 4 header text lines followed by 6 columns and 500 rows of
data.

infile = 'sample.data'
fid = fopen(infile,'r');

line=fgetl(fid); % read header line #1
line=fgetl(fid); % read header line #2
line=fgetl(fid); % read header line #3
line=fgetl(fid); % read header line #4

A = fscanf(fid,'%g %g %g %g %g %g \n',[6,inf]);
A = A';
fclose(fid);

134

XXIII. EXAMPLES OF DECODERS FOR ASCII DATA FILES

A. INTRODUCTION

The following four examples are all rawinsondes data, but the techniques applied in these
examples can be used for most types of ASCII text data files.

• All four examples have text header lines preceding the columns of data.

o Each text header line is read with the “fgetl” function.

o Station identifier, date/time, and other information are extracted
from the header using character string manipulation techniques.

o Latitude, longitude and elevation values are converted from
character strings to real numbers using the “str2num” function.

o All header lines must be read with “fgetl” before the columns of
data can be read.

• In the first two examples, there are no text characters, such as ‘///’, used to
denote missing values.

o Since only numbers exist in each column, the “fscanf” function is
used read the columns of data.

o Missing values are denoted with –9999.99 or 99999. Missing
values must be set to NaN using methods described on p. 114.

• In examples 3 and 4, the text characters ‘////’ are used to denote missing
values in the columns of data.

o The “fscanf” function cannot be used to read ‘///’.

o Each line of data must be read as a text string, using “fgetl”, and
the data values extracted with string manipulation.

o Each data string must be checked for ‘///’ before using the
“str2num” function. If the string contains ‘///’ and not a data value,
NaN is stored in the data array.

135

B. EXAMPLE 1: MISSING DATA DENOTED BY –9999.99

File = sample_data1.txt

SNPARM = PRES;HGHT;TMPC;DWPC;RELH;DRCT;SPED
STID = OAK STNM = 72493 TIME = 990126/0000
SLAT = 37.73 SLON = -122.22 SELV = 3.0
STIM = 0

PRES HGHT TMPC DWPC RELH DRCT SPED
1012.00 3.00 11.60 5.60 66.61 180.00 5.00
1000.00 104.00 10.00 3.00 61.76 –9999.99 –9999.99
925.00 745.00 4.20 3.20 93.20 225.00 7.00

Decode with: sample_decoder1.m

% sample_decoder1.m M. Jordan 2/22/2002
% Decodes data in the exact format specified in file=sample_data1.txt.

infile='sample_data1.txt'; % Define ASCII data file name
fid = fopen(infile,'r'); % Open ASCII file with read option

line1 = fgetl(fid); % Reads 1st line as a character string
line2 = fgetl(fid); % Reads 2nd line as a character string
line3 = fgetl(fid); % Reads 3rd line as a character string
line4 = fgetl(fid); % Reads 4th line as a character string
line5 = fgetl(fid); % Reads 5th line as a character string

stid = line2(9:11); % Station ID is a character string
stnm = line2(33:37); % Station Number is a character string
datetime = line2(48:58); % Date/Time of data is a character string
lat = line3(9:14); % Latitude is a character string
lon = line3(28:34); % Longitude is a character string
elev = line3(45:51); % Elevation (m) is a character string

% read 7 columns of data, stores in matrix A
% [7,inf] allows infinite number of lines
% data columns in the ASCII file are stored as ROWS in matrix A

A = fscanf(fid,'%f %f %f %f %f %f %f \n',[7,inf]);

% transpose matrix A, so the columns of data in the ASCII file
% are columns in matrix A

data = A';

fclose(fid); % close ASCII file

% break matrix A into column vectors
pres=data(:,1); % Pressure (mb)
hght=data(:,2); % Height (meters)
tmpc=data(:,3); % Temperature (C)
dwpc=data(:,4); % Dew Pt (C)
relh=data(:,5); % Relative Humidity (%)
drct=data(:,6); % Wind Direction (degrees)
sped=data(:,7); % Wind Speed (m/s)

136

C. EXAMPLE 2: MISSING DATA DENOTED BY 9999

File = sample_data2.txt

Started at: 28 AUG 93 23:52 GMT

Time AscRate Hgt/MSL Pressure Temp RH Dewp Dir Speed WndStat
min s ft/s ft hPa degC % degC deg kts

0 0 0.0 7 1010.3 21.9 65 15.0 260 8.9 000000000000
0 2 21.3 49 1008.8 20.7 70 15.1 265 9.3 100100111100
0 4 15.6 69 9999.9 20.1 74 15.3 999 999.9 100100111100
0 6 13.7 89 1007.3 999.9 999 999.9 269 9.7 100100111100
0 8 13.1 112 1006.6 18.9 77 14.8 271 9.9 100100111100
0 10 12.5 99999 1005.8 18.8 79 15.1 271 10.1 100100111100
0 12 12.0 151 1005.1 18.7 80 15.2 271 10.3 100100111100
0 14 12.0 174 1004.4 18.7 81 15.4 271 10.5 100100111100
0 16 12.1 200 1003.4 18.7 82 15.6 269 10.5 100100111100
0 18 11.8 220 1002.6 18.6 83 15.7 268 10.5 100100111100

Decode with: sample_decoder2.m

% sample_decoder2.m M. Jordan 2/22/2002
% Decodes data in the exact format specified in file=sample_data2.txt.
% Reads data with "fscanf"

infile='sample_data2.txt'; % Define ASCII data file name
fid = fopen(infile,'r'); % Open ASCII file with read option

line1 = fgetl(fid); % Reads 1st line as a character string
line2 = fgetl(fid); % Reads 2nd line as a character string
line3 = fgetl(fid); % Reads 3rd line as a character string
datetime = line1(18:36) % Date/Time of data is a character string

% read 11 columns of data, stores in matrix A
% [11,inf] allows infinite number of lines
% data columns in the ASCII file are stored as ROWS in matrix A

A = fscanf(fid,'%f %f %f %f %f %f %f %f %f %f %f \n',[11,inf]);

% transpose matrix A, so the columns of data in the ASCII file
% are columns in matrix A

data = A';
fclose(fid); % Close data file

% break matrix A into column vectors
hght=data(:,4); % Height (feet)
pres=data(:,5); % Pressure (mb)
tmpc=data(:,6); % Temperature (C)
relh=data(:,7); % Relative Humidity (%)
dwpc=data(:,8); % Dew Pt (C)
drct=data(:,9); % Wind Direction (degrees)
sped=data(:,10); % Wind Speed (knots)

137

D. EXAMPLE 3: MISSING DATA DENOTED BY SLASHES

For data in the format listed below, use the sample program listed below. Missing data is
denoted with slashes (////) for each missing character.

File = sample_data3.txt

Sounding program REV 7.62 using Omega

Ship : PT SUR
Location : 33.38 N 177.77 W 3 m

Started at: 8 APR 96 20:57 GMT
Time AscRate Hgt/MSL Pressure Temp RH Dewp Dir Speed WndStat

min s m/s m mb degC % degC deg m/s

0 0 0.0 3 1016.8 16.5 72 10.5 276 3.0 -----------
0 2 2.0 7 1016.2 16.0 61 9.0 /// //// --CDEFGH---
0 4 1.5 ///// 1016.0 15.9 61 8.7 /// //// --CDEFGH---
0 6 2.3 17 ////// 15.1 63 8.2 /// //// --CDEFGH---
0 8 2.1 20 1014.7 14.7 64 ///// /// //// --CDEFGH---
0 10 2.5 28 1013.7 ///// 66 8.0 187 3.8 --CDEFGH---
0 12 2.4 32 1013.2 14.0 68 8.2 /// //// --CDEFGH---
0 14 2.2 34 1013.0 13.9 /// 8.4 /// //// --CDEFGH---
0 16 2.3 40 1012.2 13.8 71 8.7 /// //// --CDEFGH---

Decode with: sample_decoder3.m

% file = sample_decoder3.m
% written by: M. Jordan 02/25/2002
%
% Purpose: Decode the sounding 'sample_data3.txt',
% which contains ////'s to indicate missing values.
%
% 1. Each sounding data line must be read as a character string.
% 2. Data values must be located within the string and
% converted from character to number (str2num function).
% 3. NaN = Missing values
%
% Input:
% None. Filename is "hardwired".
%
% Output:
% stid = station ID character string
% datetime = date/time character string
% latstr = latitude character string
% lonstr = longitude character string
% elevstr = station elevation (m) character string
% iline = number of sounding lines decoded
% lat = latitude - real number
% lon = longitude - real number
% elev = station elevation - real number
% hght = height (m)
% pres = pressure (mb)
% tmpc = temperature (C)
% relh = relative humidity (%)
% dwpc = dew point temperature (C)
% drct = wind direction (degrees)
% sped = wind speed (m/s)

138

% ... open the data file, read only
fid_in = fopen('sample_data3.txt','r');

% ... read each text header line
line1 = fgetl(fid_in);
line2 = fgetl(fid_in);
line3 = fgetl(fid_in);
line4 = fgetl(fid_in);
line5 = fgetl(fid_in);
line6 = fgetl(fid_in);
line7 = fgetl(fid_in);
line8 = fgetl(fid_in);
line9 = fgetl(fid_in);

% decode the information in the sounding header
%
stid = line3(12:17); % station ID character string
latstr = line4(12:16); % latitude character string
lonstr = line4(20:25); % longitude character string
elevstr = line4(29:34); % station elevation (m) character string
datetime = line6(18:36); % date/time character string

% convert string lat/lon/elev to real numbers

if (line4(18:18) == 'N')
lat = str2num(latstr) ; % N. Hemisphere Latitude is positive

elseif (line4(18:18) == 'S')
lat = -1.0*str2num(latstr); % S. Hemisphere Latitude is negative

else
lat = NaN; % Latitude is missing

end

if (line4(27:27) == 'E')
lon = str2num(lonstr); % E. Hemisphere Longitude is positive

elseif (line4(27:27) == 'W')
lon = -1.0*str2num(lonstr); % W. Hemisphere Longitude is negative

else
lon = NaN; % Longitude is missing

end

elev = str2num(elevstr); % convert elevation to real number

% ... initialize a line counter
iline=0;

%
% ... This WHILE LOOP to READ EACH DATA LINE is an
% infinite loop, since "while 1" is always true.
% The way to exit from the loop is with an if, break.
% The "isstr" function will test if line is a character
% string. The if ~isstr(line) logic means if line is
% NOT (~) a string. So if ~isstr(line) is TRUE when
% line is NOT a string, and is the end-of-file.
% When end of file is reached, "break" exists the WHILE Loop.

while 1

% ... Read each line as a character string
line=fgetl(fid_in);

139

% ... Check for the effective "end-of-file"
if ~isstr(line), break, end

% ... Increment line counter. This is the index for each
% data array

iline = iline+1;

% ... IF logic to check for missing values, ////. If not
% '////', then convert string to number.

if line(19:23) == '/////' % height (m)
hght(iline) = NaN;

else
hght(iline) = str2num(line(19:23));

end

if line(27:32) == '//////' % pressure (mb)
pres(iline) = NaN;

else
pres(iline) = str2num(line(27:32));

end

if line(35:39) == '/////' % temperature (C)
tmpc(iline) = NaN;

else
tmpc(iline) = str2num(line(35:39));

end

if line(41:43) == '///' % relative humidity (%)
relh(iline) = NaN;

else
relh(iline) = str2num(line(41:43));

end

if line(46:50) == '/////' % dew point (C)
dwpc(iline) = NaN;

else
dwpc(iline) = str2num(line(46:50));

end

if line(53:55) == '///' % wind direction (deg)
drct(iline) = NaN;

else
drct(iline) = str2num(line(53:55));

end

if line(58:61) == '////' % wind speed (m/s)
sped(iline) = NaN;

else
sped(iline) = str2num(line(58:61));

end

end % This is the end of the WHILE Loop

% ... The IF, BREAK jumps to the command following this line.

fclose(fid_in); % close input file

140

% transpose row vectors into column vectors

hght = hght';
pres = pres';
tmpc = tmpc';
relh = relh';
dwpc = dwpc';
drct = drct';
sped = sped';

sprintf('Number of lines in the input sounding: %5.0f',iline)

% clear unnecessary variables
clear fid_in ans iline
clear line line1 line2 line3 line4 line5 line6 line7 line8 line9
% ---

141

E. EXAMPLE 4: MISSING DATA DENOTED BY SLASHES

For data in the format listed below, use the sample program listed below. Missing data is
denoted with slashes (////) for each missing character.

File = sample_data4.txt

STID = NSI STNM = 72291 TIME = 930824/0000
SLAT = 33.25 SLON = -119.45 SELV = 154.0

HGHT PRES TMPC RH DRCT SPED
0.91 1013.10 0.15400E+02 86 12 1.00
4.88 /////// 0.15900E+02 85 /// //////
7.01 1012.20 0.15900E+02 85 355 0.72

13.11 1011.50 //////////// 87 356 0.82
17.99 1011.00 0.15900E+02 88 359 0.87
20.12 1010.80 0.16000E+02 /// /// //////
24.09 1010.30 0.16100E+02 87 13 1.08
28.05 1009.80 0.16100E+02 87 24 1.18

//////// 1009.30 0.16200E+02 87 34 1.29
38.11 /////// 0.16200E+02 87 43 1.29
38.11 1008.50 0.16400E+02 87 48 1.39

Decode with: sample_decoder4.m

% file = sample_decoder4.m
%
% written by: M. Jordan 02/27/2002
%
% Purpose: Decode the sounding 'sample_data4.txt', which contains ////'s
% to indicate missing values.
%
% 1. Each sounding data line must be read as a character string.
% 2. Data values must be located within the string and
% converted from character to number (str2num function).
% 3. NaN = Missing values
%
% Input: None. Filename is "hardwired".
%
% Output:
% stid = station ID character string
% datetime = date/time character string
% lat = latitude - real number
% lon = longitude - real number
% elev = station elevation - real number
% iline = number of sounding lines decoded
% hght = height (m)
% pres = pressure (mb)
% tmpc = temperature (C)
% relh = relative humidity (%)
% drct = wind direction (degrees)
% sped = wind speed (m/s)

% ... open the data file, read only
fid_in = fopen('sample_data4.txt','r');

% ... read each text header line
line1 = fgetl(fid_in);
line2 = fgetl(fid_in);

142

line3 = fgetl(fid_in);
line4 = fgetl(fid_in);

% decode the information in the sounding header

stid = line1(9:11); % station ID character string
datetime = line1(45:55); % date/time character string
lat = str2num(line2(9:14)); % latitude - real number
lon = str2num(line2(28:34)); % longitude - real number
elev = str2num(line2(47:51)); % station elevation - real number

% ... initialize a line counter
iline=0;

% ... This WHILE LOOP to READ EACH DATA LINE is an
% infinite loop, since "while 1" is always true.
% The way to exit from the loop is with an if, break.
% The "isstr" function will test if line is a character
% string. The if ~isstr(line) logic means if line is
% NOT (~) a string. So if ~isstr(line) is TRUE when
% line is NOT a string, and is the end-of-file.
% When end of file is reached, "break" exists the WHILE Loop.

while 1
% ... Read each line as a character string

line=fgetl(fid_in);
%
% ... Check for the effective "end-of-file"

if ~isstr(line), break, end

% ... Increment line counter. This is the index for each
% data array

iline = iline+1;

% ... IF logic to check for missing values, ////. If not
% '///', then convert string to number.

if line(1:8) == '////////'
hght(iline) = NaN;

else
hght(iline) = str2num(line(1:8));

end
%

if line(11:17) == '///////'
pres(iline) = NaN;

else
pres(iline) = str2num(line(11:17));

end
%

if line(19:30) == '////////////'
tmpc(iline) = NaN;

else
tmpc(iline) = str2num(line(19:30));

end
%

if line(32:34) == '///'
relh(iline) = NaN;

else
relh(iline) = str2num(line(32:34));

end

143

%
if line(38:40) == '///'
drct(iline) = NaN;

else
drct(iline) = str2num(line(38:40));

end
%

if line(42:47) == '//////'
sped(iline) = NaN;

else
sped(iline) = str2num(line(42:47));

end
%
end % This is the end of the WHILE Loop

% ... The IF, BREAK jumps to the command following this line.

fclose(fid_in);

sprintf('Number of lines in the input sounding: %5.0f',iline)

% clear unnecessary variables
clear fid_in line line1 line2 line3 line4 ans

% --

144

THIS PAGE INTENTIONALLY LEFT BLANK

145

APPENDIX A. MATLAB SKILLS CHECKLIST

REFERENCES:

1. Text book: Getting Started with MATLAB 5, R. Pratap, 1999.
2. MR 2020 Course Notes

SKILLS:

1. Start MATLAB from the menu or UNIX shell (notes, p. 19)

2. MATLAB windows (section 1.6.1)

3. On-line help (sections 3.3, 1.6.2, 1.6.6 and Appendix A.2)

4. Input-output, format command, case sensitivity, use of the semicolon (section 1.6.3)

5. M-files and MAT files (section 1.6.4)

6. Workspace commands (section 1.6.6)

7. Use operating system commands from the command line: built-in commands (section
1.6.6) and use of the exclamation point before UNIX commands (notes, p.17).

8. Create and manipulate matrices (section 3.1)

9. Matrix operators (notes, p. 26, section 3.2.1, and Appendix A.6)

10. Array operators (notes, p. 31, section 3.2.1, and Appendix A.6)

11. Order of precedence (notes, p. 23)

12. Built-in functions (section 3.2.4 and Appendix A.7)

13. Loading and saving data (section 3.4.1)

14. Using the diary (section 3.4.2)

15. Punctuation marks and syntax (Appendix A.1)

16. General purpose commands (Appendix A.2)

17. Special variables and constants (Appendix A.3)

A-1

18. Ways to get data into MATLAB

• manual entry (notes, p. 19, sections 2.1-2.2, section 3.1)
• load binary “.mat” file (section 3.4)
• load ASCII text file with columns of data, but without header lines, or header

commented out with percent (%) in column 1 (see on-line help for "load"
command).

19. "input" Command (notes, p. 36, section 4.3.5, p.94)

20. "disp" Command (notes, p. 38)

21. Search path and "path" Command (notes, p. 41)

22. Script M-files (notes, p. 43, section 4.1)

23. Relational and Logical Operators using Scalar Variables (notes, p. 49)

24. Compound Expressions using Relational and Logical Operators (notes, p. 49, class

and lab examples)

25. "if" Statements (notes p. 53, section 4.3.4)

26. "for" Loops (notes, p. 60, section 4.3.4)

27. "while" Loops (notes p. 66, section 4.3.4)

28. "break" Command (notes p. 69, section 4.3.4, p. 92)

29. "error" Command (section 4.3.4, p. 93) ** not on test, but good to know

30. "return" Command (section 4.3.4, p. 94) ** not on test, but good to know

31. "keyboard" Command (section 4.3.5, p. 94) ** not on test, but good to know

32. "pause" Command (section 4.3.5, p. 96) ** not on test, but good to know

33. On-line help for script and function M-files (section 3.3, p. 64-69, section 4.3.1, p.88)

34. Function M-files (notes, p. 71, section 4.2, 4.2.1, 4.2.2, p. 80-88)

• "feval" Command (section 4.2.2, p. 85) ** not on test, but useful
• subfunctions (section 4.2.3, p. 87) ** not on test, but useful
• parsed functions (section 4.2.4, p. 87) ** not on test, advanced topic
• profiler (section 4.2.5, p. 87) ** not on test, advanced topic

A-2

35. "lookfor" Command (section 3.3, p. 64-69, section 4.3.1, p.88)

36. Continuation (…) Command (section 4.3.2, p. 89)

37. Understanding MATLAB Error Messages (chapter 7, p.197-202)

38. Punctuation marks and syntax (Appendix A.1, p. 213-214)

39. Operators and Logical Functions (Appendix A.6, p. 217)

40. The skills, commands and functions listed in the following tables:

Table 1. Basic plotting commands.

MATLAB Command or Topic Textbook Reference or
Helpdesk: “Using MATLAB
Graphics” topic

plot
 plot(Temp,Ht,’r--*’)
 plot(Temp,Ht,’b-‘,DewPt,Ht,’r—‘)

Sections 6.1, 6.1.1. and 6.1.5

hold on / hold off Section 6.5 and on-line help

line Section 6.5
subplot (multiple plots) Section 6.2
figure
 figure(number)

See on-line help

xlabel Section 6.1.2
ylabel Section 6.1.2
title Section 6.1.2
text Section 6.1.2
gtext Section 6.1.2
legend Section 6.1.2
axis
 axis ij flips vertical axis

Section 6.1.3 -- see on-line help
for newer syntax than in textbook

plotedit Section 6.1.4
Helpdesk: Search for function
“plotedit”

propedit Sections 6.1.4 and 6.4
close
 close all

See on-line help

clf … clears current figure See on-line help
Greek symbols in text strings
 ‘ \pi \Pi ‘

Helpdesk: Search for “Greek letters”

A-3

Table 2. Advanced plotting options: 2-D and 3-D plots.

MATLAB Command or Topic Textbook Reference or
Helpdesk: “Using MATLAB Graphics” topic

Specialized 2-D plots Section 6.1.6, p. 154-159
help graph2d
help specgraph

3-D plots Section 6.3
help graph3d

plot3 Section 6.3
comet3 Section 6.3
view Section 6.3.1
Mesh and surface plots
 Function: meshgrid

Section 6.3.3

Interpolated surface plots
 Function: griddata

Section 6.3.4

Table 3. Character String Manipulation

MATLAB Command or Topic Reference
Character Strings

• Rules for Character Strings
• Character Strings as Row Vectors
• Concatenation
• Convert Numbers to Character Strings
• Matrices of Character Strings
• Individual Character Strings in a

Matrix
• Adding Strings to Existing Matrices
• Examples using “for” loops

Notes, pp. 94-99 and
Text Section 3.2.6

Character String Functions (built-in)
• int2str
• num2str
• char
• str2num
• other functions

Notes, p. 94 and Text p. 62
• Notes, p. 95; On-line help
• Notes, p. 95; On-line help
• Notes, p. 96; On-line help
• On-line help
Text p. 62; Appendix 9, p. 220

“eval” function

Notes, p. 100; Text p. 62-63

A-4

Table 4. Searching arrays/matrices; replacing bad/missing data;

plotting only good data.

MATLAB Command or Topic Reference
Array indices: definitions and rules Notes, p. 102
Matrix indices: definitions and rules Notes, p. 103
“find” function Notes, p. 104; Text p. 57
Logical arrays and matrices Notes, p. 105
“logical” function Notes, p. 105; on-line help
Logical and relational operators (for arrays) Notes, p. 107; Text p. 54-57
Built-in logical functions Text p. 57 and Appendix 6, p. 217
Search arrays and matrices Notes, p. 108
“isnan” function Notes, p. 108
Bad or missing data Notes, p. 112
Data quality control (QC) Notes, p. 112
Replacing bad or missing data values Notes, p. 114
Excluding NaNs while plotting Notes, p. 116

Table 5. Program design strategy and debugging.

MATLAB Command or Topic Reference
Program design strategy Notes, p. 118
Debugging suggestions Notes, p. 120

Table 6. Formatted Output.

MATLAB Command or Topic Reference
Writing to the screen

• sprintf function
• fprintf function

Notes, p. 121
Notes, p. 121
Notes, p. 128

Format strings Notes, p. 124

Table 7. Statistical Functions.

MATLAB Command or Topic Reference
Built-in statistical functions Text Section 5.3, p. 123-124

A-5

Table 8. Reading ASCII Text Data Files

MATLAB Command or Topic Reference
“fopen” function Notes, p 131. On-line help.
“fclose” function Notes, p 132. On-line help.
“fgetl” function Notes, p 132. On-line help.
“fscanf” function Notes, p 133. On-line help.

A-6

	INTRODUCTION TO UNIX
	A.UNIX SKILLS CHECKLIST
	B.DIRECTORY STRUCURE WITH RELATIVE PATH NAMES
	C.DIRECTORY STRUCURE WITH ABSOLUTE PATH NAMES
	COMMON UNIX COMMANDS
	E.ABSOLUTE AND RELATIVE PATH NAMES
	F.USING THE “cd” COMMAND
	G.UNIX FILE PERMISSIONS

	II.INTRODUCTION TO MATLAB
	A.TEXTBOOK
	B.HOW DOES MATLAB WORK?
	C.STARTING MATLAB
	D.USING MATLAB AS A CALCULATOR
	E.ASSIGNING VARIABLE NAMES
	F.WORKSPACE ENVIRONMENT
	G.SAVING THE WORKSPACE
	H.RELOADING THE WORKSPACE

	III.ORDER OF PRECEDENCE
	IV.MATRIX OPERATORS
	A.OVERVIEW
	B.MATRIX ADDITION AND SUBTRACTION
	C.MATRIX MULTIPLICATION
	D.MATRIX DIVISION
	E.MATRIX EXPONENTIATION
	F.EXAMPLES USING MATRIX OPERATORS

	V.ARRAY OPERATORS
	A.OVERVIEW
	B.ARRAY ADDITION AND SUBTRACTION
	C.ARRAY MULTIPLICATION
	D.ARRAY DIVISION
	E.ARRAY EXPONENTIATION
	F.NONCONJUGATED TRANSPOSE
	G.EXAMPLES USING ARRAY OPERATORS

	VI.SIMPLE DATA INPUT AND OUTPUT
	A.METHODS TO INPUT DATA INTO MATLAB
	B.“input” FUNCTION
	C.DISPLAYING VALUES TO THE SCREEN
	D.“disp” FUNCTION

	VII.SEARCH PATH
	A.WHAT IS A “SEARCH PATH”?
	B.ADD OR REMOVE A PATH

	VIII.M-FILES
	A.WHAT IS AN “M-FILE”?
	B.SCRIPT M-FILES
	C.FUNCTION M-FILES
	D.RULES APPLYING TO BOTH SCRIPT AND FUNCTION M-FILES
	E.HOW TO CREATE AN M-FILE
	F.WHY USE A SCRIPT M-FILE?
	G.CREATING AND TESTING A SCRIPT M-FILE
	H.PROGRAMMING TIP
	I.DOCUMENTATION REQUIREMENTS FOR SCRIPT M-FILES

	IX.RELATIONAL AND LOGICAL OPERATORS USING SCALAR VARIABLES
	A.INTRODUCTION
	B.DEFINITIONS

	X.LOOPS, BRANCHES AND CONTROL-FLOW
	A.INTRODUCTION
	B.“ if ” STATEMENTS
	C.“ for ” LOOPS
	D.“ while ” LOOPS
	E.“break” COMMAND

	XI. FUNCTIONS
	A. INTRODUCTION
	B.ADVANTAGES OF USING FUNCTIONS
	C.DISADVANTAGES OF USING FUNCTIONS
	D.REQUIRED ELEMENTS AND EXECUTION OF A FUNCTION M-FILE
	E.FUNCTION VARIABLES: INPUT, OUTPUT AND LOCAL
	F.VARIABLES NAMES
	�
	G.HOW TO WRITE AND TEST A FUNCTION
	H.THINGS TO CHECK WHEN CALLING A FUNCTION IN A PROGRAM

	XII.GENERAL PROGRAMMING TIPS
	A.VARIABLE NAMES
	B.M-FILES

	XIII.PLOTTING WITH MATLAB
	A.BASIC PLOT COMMANDS
	B.HANDLE GRAPHICS
	C.PLOTTING A COASTLINE
	D.PRINTING AND SAVING A DIGITAL IMAGE

	XIV.HOW TO USE “FTP”
	A.OVERVIEW
	B.PROCEDURES TO FTP TO THE IDEA/GRAPHICS LABS
	C.FTP TO AN NPS NETWORK PC
	D.FTP TO THE IDEA OR GRAPHICS LABS FROM OFF-CAMPUS

	XV.CHARACTER STRINGS
	A.RULES FOR CHARACTER STRINGS
	B.CHARACTER STRINGS AS ROW VECTORS
	C.CONCATENATION
	D.CONVERT NUMBERS TO CHARACTER STRINGS
	E.MATRICES OF CHARACTER STRINGS
	F.INDIVIDUAL CHARACTER STRINGS IN A MATRIX
	G.ADDING STRINGS TO EXISTING MATRICES
	H."for" LOOP TO CREATE A MATRIX OF CHARACTER STRINGS

	XVI.“eval” FUNCTION
	A.OVERVIEW
	B.EXAMPLES

	XVII. SEARCHING DATA ARRAYS AND MATRICES
	A.OVERVIEW
	B.BASIC CONCEPTS AND DEFINITIONS
	C.ARRAY INDEX
	D.MATRIX INDEX
	E.“find” FUNCTION
	F.LOGICAL ARRAYS AND MATRICES
	G.RELATIONAL AND LOGICAL OPERATORS USING ARRAYS AND MATRICES
	H.SEARCHING DATA ARRAYS

	XVIII. DATA WITH MISSING/BAD VALUES AND “NaN”
	A.MISSING/BAD DATA AND QUALITY CONTROL
	B.METHOD TO REPLACE MISSING/BAD DATA VALUES
	C.EXCLUDING “NANS” IN PLOTS

	XIX. PROGRAM DESIGN EXAMPLE
	XX.DEBUGGING SUGGESTIONS
	FORMATTED OUTPUT
	A.INTRODUCTION
	B.“sprintf” FUNCTION
	C.FORMAT STRINGS
	D.“fprintf” FUNCTION

	XXII. READING ASCII TEXT DATA FILES
	A.INTRODUCTION
	B.OPEN FILE WITH “fopen” FUNCTION
	C.CLOSE FILE WITH “fclose” FUNCTION
	D.READ LINE OF TEXT WITH “fgetl” FUNCTION
	E.READ DATA COLUMNS WITH “fscanf” FUNCTION

	XXIII. EXAMPLES OF DECODERS FOR ASCII DATA FILES
	A.INTRODUCTION
	B.EXAMPLE 1: MISSING DATA DENOTED BY –9999.99
	C.EXAMPLE 2: MISSING DATA DENOTED BY 9999
	D.EXAMPLE 3: MISSING DATA DENOTED BY SLASHES
	E.EXAMPLE 4: MISSING DATA DENOTED BY SLASHES

	APPENDIX A. MATLAB SKILLS CHECKLIST
	REFERENCES:
	SKILLS:
	Section 6.5 and on-line help
	Reference
	Character Strings

	Matrices of Character Strings
	Reference
	Reference
	Reference
	Reference
	Reference

